NG Manual

The PSG (Programmable Sound Generator) contains three tone generators and one noise generator. Fach of the tone and noise generators can be distributed left and right, enabling a pseudo stereo effect to be generated. (See "System Control Port".)

Control of the PSG itself, which is described below, is performed by means of the write operation to I/O area 7FH.

The basic clock is 3.579545 MHz. The data to be sent from the CPU is immediately latched in the PSG, hence there is no need for a wait. The sound output goes OFF in the case of a power-on reset. Design the software so that the output goes OFF at the beginning of the program as well.

[1] Tone generator

Each tone generator consists of a frequency setting section (programmable counter) and a level setting section (programmable attenuator).

(1) Method of calculating the 10-bit frequency division ratio n

At the frequency setting section, the basic clock is frequency-divided to 1/32. This is further frequency divided by the tone counter set by the 10 bits F9 (MSB: top bit) to FO (LSB: bottom bit).

Consequently, the basic clock frequency is divided by 32, then the desired frequency can be output by setting the value obtained by dividing the frequency-divided clock by the desired frequency in F9 to F0.

 $n = N/(32 \times f)$ n = 10-bit frequency division ratio (F9 to F0) Where N = Basic clock f = Desired frequency

(2) Tone frequency setting

Set the 10-bit frequency division ratio (F9 to F0) in the tone counter in order to obtain the desired frequency. The 1st and 2nd bytes are identified by means of the top bit.

1 st byte

	D7	D6	D5	D4	D3	D2	D1	DO
--	----	----	----	----	----	----	----	----

*	REG	. AD	DR.		n		
1.	R2	R1	RO	F3	F2	F1	F

R2	R1	RO	Control register allocation	1st
0	0	0	Tone generator 1	$8 \times$
0	1	0	Tone generator 2	AX
				-

D7	D6	D5	D4	D3	D2	D1	DO
*	*.*.		,	n			
0	X	F9	F8	F7	F6	F5	F4

(3) Example of frequency setting

Consider an example in which the basic clock frequency is 3.579545 MHz and the desired frequency of 440 Hz is output from TONE 1. (corresponding to "A" on the musical scale)

- a. Calculation of frequency division ratio n
 - $n = N/(32 \times f)$
 - = 3579545/(32 x 440)
 - ₹254.229

n is a 10-bit integer, hence the nearest integral value is 254.

Consequently, the frequency actually output is $f = N/(32 \times n)$

- = 3579545/(32 x 254)
- ≒ 440.397 (Hz)

```
Here, the pitch error \triangle C is obtained according to the following equation.

\triangle C = \{(f' - f)/f\}/(\frac{1200}{2}-1)
```

- $= \{(440.397-440)/440\}/(1200 \sqrt{2}-1)$ = (0.397/440)/0.000578 = 7.56 f: True frequency f': Actual frequency 1200 √2
- b. Data sent to PSG
 - n = 254
 - = 0011111110B

1st byte

*	REG	. AD	DR.	n				
1	R2	R1	RO	F3	F2	F1	F0	

D7	D6	D5	D4	D3	D2	D1	DO
1	0	0	0	1	1	1	0

2nd byte

	D7	D6	D5	D4	D3	D2	D1	DO
BC	Gi	12	-0	°0	1	1	1	1

(4) Tone level setting

The frequency set by the tone generator is sent to the level setting section where the volume level is set. The level setting section is a programmable attenuator which enables the volume level to be set in 16 steps from 0 dB to OFF according to a 4-bit attenuation value.

1st byte only

D7	DG	D5	D4	D3	D2	D1	DO
----	----	----	----	----	----	----	----

*	REG	. AD	DR.	ATT. DATA				
1	R2	R1	RO	AЗ	A2	A1	AO	

R2	R1	RO	Control register allocation	HEXN	TIAL
0	0	1	Tone 1 attenuation	,9 X	
0	1	1	Tone 2 attenuation	BX	FSEGA
1	0	1	Tone 3 attenuation	D×	
]

Attenuation

[db]	A3 A2 A1 A0	HEX	[db]	A3 A2 A1 A0	HEX
0	0000	хO	16	1000	×8
2	0001	×1	18	1001	×9
4	0010	×2	20	1010	XA
6	0011	×З	22	1011	×В
8	0100	×4	24	1100	×C
10	0101	×5	26	1101	хD
12	0110	×6	28	1110	×Ε
					1

ХF $|\times 7$ 0 1 1 1 OFF 14

[2] Noise generator

The noise generator consists of a noise generator circuit and a level setting section. The source of the noise supplied from the noise generator circuit is a shift register with EX-OR feedback. Each time the noise control register changes, the shift register is cleared.

The shift clock of this shift register is determined by four modes that are in turn determined by NFO and NF1. If NFO = NF1 = 0, for example, the shift clock becomes (N/32)/16. In this case, if FB = 0, this shift clock will be frequency-divided by 16, resulting in synchronous noise of a frequency of N/(32 x 16 x 16). If FB = 1, the shift register will be driven by this shift clock with EX-OR feedback, resulting in the generation of white noise.

B00021

(1) Noise generator circuit control

1st byte only

FB

0

1.

1

D7	D6	⁻ D5	D4	D3	D2	D1	DO
	1		And in case of the local division of the loc	and the second se			

						the second se
*	REG	ADDR.			SHIFT	

1	1	1	0	×	FB	NF1	NFO	
							1	·

CONFIDENTIAL

						99	
Noise Generation		NF1	NFO	Shift clock	k	AA	
Synchronous		0	0	(N/32)/k	16	NP: PBasie Bibck OF SEGA	
Noise		0	1	(N/32)/k	32		
White noise		1	0	(N/32)/k	64		
]	1	1	Tone generator 3	<-At	this time, the tone of the can be varied continuously	

~~

* The noise frequency is $(N/(32 \times k))/16 = N/(32 \times k \times 16)$

```
When NFO = NF1 = 1 (Control by tone 3)
```


* The noise frequency is (frequency TONE 3)/16 = $N/(32 \times n \times 16)$

b.White Noise (FB = 1) Spectrum when NFO = 0 NF1 = 1 n=1

200

-100 10K ZCK Frequency f(Hz)

(2) Noise level setting 1st byte only

D7	D6	D5	D4	D3	D2	D1	DO
----	----	----	----	----	----	----	----

*	REG	. AD	DR.	ATT. DATA			
1	1	1	1	A3	A2	A1	AO

* The attenuation control is the same as for "Tone".

CONFIDENTIAL 22

e. 1

PROPERTY OF SEGA

Register address feed 3]

E St

PSG uses the three bits R2 to R0 of the 1st byte to judge which control register the data has been sent from.

R2	R1	RO	Control register allocation	1st
0	0	0	Tone 1 frequency division ratio	8×
0	0	1	Tone 1 attenuation	9×
0	1	0	Tone 2 frequency division ratio	AX
0	1	1	Tone 2 attenuation	В×
1	0	0	Tone 3 frequency division ratio	C×
1	0	1	Tone 3 attenuation	DX

1	1	0	Noise generator circuit control	Ε×
1	1	1	noise attenuation	F×

[4] Correlation between the sound elements and PSG

	3	
Sound element	Physical element	Correlation with PSG
Pitch of sound Frequency		<pre>[1] - (2) Tone frequency setting, [2] - (1) Noise generator circuit control</pre>
Tone	Hermonic components	This is mainly related to wave length. In the tone generation mode, the PSG can output three frequencies simultaneously from only a 50% duty pulse waveform. Consequently, by combining attenuation control with this mode, the harmonic components can be controlled. In the synchronous noise mode, a 6.25% duty pulse waveform.
Strength of tone	Amplitude	As described in $[1] - (3)$ and $[2] - (2)$, the attenuation of the three tones and noise can be controlled by 4-bit data.
		etch (constant) data

The wave length at left can be realized by using external data to control each attenuation. This can be done in the range where the 4-bit attenuation data is rewritten and envelope sequence control performed at each step. The tone and noise frequencies can be controlled by the range in which correct. control can be performed.

the is

PROPERTY OF SEC.

Relation between musical interval and frequency division ratio for scale divided equally into 12 parts (basic clock: 3.579545 MHz)

HE	- PSG output	Actual frequency
1st	[Hz]	[Hz]
90A77AF71DBBC05C4D830EDDE026AE4A07F7F81B5FA50C730C9	$109.991 \\ 116.522 \\ 123.467 \\ 130.832 \\ 138.613 \\ 146.799 \\ 155.578 \\ 164.744 \\ 174.510 \\ 184.894 \\ 195.904 \\ 207.534 \\ 220.199 \\ 233.044 \\ 246.934 \\ 246.934 \\ 261.357 \\ 276.884 \\ 293.598 \\ 310.725 \\ 329.973 \\ 349.565 \\ 370.400 \\ 392.495 \\ 415.840 \\ 440.397 \\ 466.087 \\ 494.960 \\ 522.715 \\ 588.742 \\ 621.450 \\ 658.005 \\ 699.131 \\ 740.801 \\ 782.244 \\ 828.600 \\ 880.795 \\ 932.174 \\ 989.920 \\ 1045.429 \\ 1107.534 \\ 177.484 \\ 1242.899 \\ 1316.011 \\ 1398.262 \\ 1471.854 \\ 1575.506 \\ 1669.566 \\ 1747.827 \\ 1864.349 \\ 1962.473 \\ 1962.473 \\ 1962.473 \\ 1962.473 \\ 1962.473 \\ 1962.473 \\ 100000000000000000000000000000000000$	110.000 116.541 123.471 130.813 138.591 146.832 155.563 164.814 174.614 174.614 184.997 195.998 207.652 220.000 233.082 246.942 261.626 277.183 293.665 311.127 329.628 349.228 369.994 391.995 415.305 440.000 466.164 493.883 523.251 554.365 587.330 622.254 659.255 698.456 739.989 783.991 830.609 880.000 932.328 987.767 1046.502 108.731 1174.659 1244.508 1318.5100 1396.913 1479.978 1567.982 1661.219 1760.000 1864.655 1975.533
	HEX 1 st 2nd X9 3F X0 3C XA 38 X7 35 X7 32 XA 28 X7 28 XD 25 XB 21 XD 25 XB 21 XO 16 XO 14 XD 17 X8 16 XO 04 XD 17 X8 07 X0 04 X7 04 X0 04 X0 04 X0 04 X0 04 X0 04	HEX PSG output [Hz] 1st 2nd [Hz] X9 3F 109.991 X0 3C 116.522 XA 38 123.467 X7 35 130.832 X7 32 138.613 XA 2F 146.799 XF 2C 155.578 X7 2A 164.744 X1 28 174.510 XD 25 184.894 XB 23 195.904 XB 21 207.534 XC 1F 220.199 XO 1E 233.044 X5 1C 246.934 XC 1A 261.357 X4 19 276.884 XD 17 293.598 X8 <td< td=""></td<>
	HEX 1 st 2nd X9 3F X0 3C XA 38 X7 35 X7 32 XA 2F XF 2C XA 28 X7 2A XF 2C XA 28 XA 28 XD 25 XB 21 XD 25 XB 21 XD 15 XO 14 XD 17 X8 15 XO 14 XD 17 X8 15 XO 04 XO 04	HEX PSG output [Hz] 1st 2nd [Hz] X9 3F 109.991 X0 3C 116.522 XA 38 123.467 X7 35 130.832 X7 32 138.613 XA 2F 146.799 XF 2C 155.578 X7 2A 164.744 X1 28 174.510 XD 25 184.894 XB 23 195.904 XE 207.534 XC 1F 220.199 XO 1E 233.044 X5 1C 246.934 XC 1A 261.357 X4 19 276.884 XD 17 293.598 X8 16 310.725 X3 15 329.973 XO 14 349.565 XE 12 370.400 XD 11 <td< td=""></td<>
		PSG output [Hz] 109.991 116.522 123.467 130.832 138.613 146.799 155.578 164.744 174.510 184.894 195.904 207.534 220.199 233.044 246.934 261.357 276.884 293.598 310.725 329.973 349.565 370.400 392.495 415.840 440.397 466.087 494.960 522.715 588.742 621.450 658.005 699.131 740.801 782.244 828.600 880.795 932.174 989.920 1045.429 1107.534 1177.484 1242.899 1316.011 1398.262 1471.854 1575.506 1669.566 1747.827 1864.349 1962.473

- -

* f = 3579545/(32 x n) n: 10-bit frequency division Maximum frequency is n = 1
* In the previous table, musical interval was calculated on the basis of 440 Hz as concert pitch.
* Regarding HEX, the X part is as follows:

Tone $1 \rightarrow 8$ Tone $2 \rightarrow A$ Tone $3 \rightarrow C$ 1st is the 1st byte 2nd is the 2nd byte

12

TONE 1 to 3 Duty 50%

Base tone in synchronous noise mode Duty 6.25%

800031

CONFIDENTIAL 22 PROPERTY OF SEGA

ata Control and Supplementary Items

•

 \mathcal{I}_{i}

Data input timming chart

Flow of data control timing (t is controlled by an external processor.)

~ ~

If a frequency of no greater than that generated by the tone generator is output, the outputs shown in the table below will be obtained due to the synchronous noise mode of the noise generator section. (Basic clock: 3.579545 MHz)

•. •.

Musical interval	Frequency	HEX (TONE3)		DCC output	Actual frame	
IIILEI VAI	ratio	1st	2 nd	[Hz]	Actual Trequency [Hz]	
C ° 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	428 404 381 360 320 322 269 269 269 269 269 269 269 269 269 2	CC4 CC4 CC2 CC2 CC2 CC2 CC2 CC2 CC2 CC2	1A 197165421000000000000000000000000000000000000	$ \begin{array}{r} 16.335 \\ 17.305 \\ 18.350 \\ 19.420 \\ 20.623 \\ 21.848 \\ 23.150 \\ 24.531 \\ 25.990 \\ 27.525 \\ 29.130 \\ 30.935 \\ 32.670 \\ 34.610 \\ 36.796 \\ 38.841 \\ 41.125 \\ 43.696 \\ 46.300 \\ 48.890 \\ 51.787 \\ 55.050 \\ 58.261 \\ 69.221 \\ 73.593 \\ 77.681 \\ 82.251 \\ 87.391 \\ 91.991 \\ 98.469 \\ 104.348 \\ \end{array} $	$\begin{array}{c} 16. \ 352\\ 17. \ 324\\ 18. \ 354\\ 19. \ 445\\ 20. \ 602\\ 21. \ 827\\ 23. \ 125\\ 24. \ 500\\ 25. \ 957\\ 27. \ 500\\ 29. \ 135\\ 30. \ 868\\ 32. \ 703\\ 34. \ 648\\ 36. \ 708\\ 34. \ 648\\ 36. \ 708\\ 38. \ 891\\ 41. \ 203\\ 43. \ 654\\ 46. \ 249\\ 48. \ 999\\ 51. \ 913\\ 55. \ 000\\ 58. \ 270\\ 61. \ 735\\ 65. \ 406\\ 69. \ 296\\ 73. \ 416\\ 77. \ 782\\ 82. \ 407\\ 87. \ 307\\ 92. \ 499\\ 97. \ 999\\ 103. \ 826\end{array}$	

* Set E3H for control of the noise generator circuit (synchronous noise mode).
f = TONE 3 frequency/16 = 3579545/(32 x n x16)

CONFPSG manual END

22

ς.

PROPERTY OF SEGA

plementary description for manual

System control port

3 I/O port O2H (Read/Write)

* Normally, be sure to make the status of this port "1". When using this value, first, set the status to "1" after the first NMI is generated, then subsequently set it to "0". If you fail to do this, the next NMI will not be generated.

Addition:

An NMI is enabled after the execution of one command from when the port is set to "O". This is to prevent the NMI from becoming active once again in the NMI routine. Normally, therefore, perform the following processing.

MMI:

A, 11XXXXXXB LD (002H),A OUT A, 01XXXXXXB LD (002H),A OUT RETN

; An NMI is enabled after this command.

B. System control port 6 I/O port 05H (Read/Write) Mode setting for serial communications

* INT

There is no need to perform an operation such as that of I/O port O2H. *

Addition

tion When using this function (serial communications NMI), set WIND of 9/0 port 02H to the disable state ("1"). An NMI will be generated at the fall of the pulse at the NMI terminal. If, however, a serial communications NMI is generated, the NMI terminal will go LOW, preventing the next NMI from becoming active. The NMI terminal is made HIGH as a result of reading the data of I/O port 04H, so read the data each time an NMI is generated. If it is conceivable that the NMI terminal may already be LOW at the start of the communications, perform a "dummy" read operation onc

е,

System control port Β.

⑦ I/O port O6H (Write Only)

Left-right distribution of sound Supplementary explanation When the headphones are plugged in, the output from the speaker is cut off and instead the sound will be heard in stereo from the headphones. When the earphones are not plugged in, the sound will be heard from the speaker in monaural. In the latter case, the distribution of the sound from all channels (three tones & noise) will be enabled. If the output from the left and right channels was disabled not by attenuator control but by distribution, the sound will not be heard from the headphones but will be heard from the speaker. To turn off both the left and right channels of the speaker, use the PSG. OF SEGA by PSG side control.

;. Communications

① Connecting the communications cable Cross-connect the game gear communications cable as shown below.

Communications connector

Provide state of the second state of the secon	where the second s	
1	PCO	To opposite side PC2
2	PC1	To opposite side PC3
З	PC2	To opposite side PCO
4	РСЗ	To opposite side PC1
5	+5V	
6	PC4	To opposite side PC5

② Parallel communications

PCO to PC6 can be set to an arbitrary input or output by means of the control register of the I/O port. Be sure to set the connecting terminals so that the terminal on one side is the output, and that on the opposite side is the input. (Never make the terminals on both sides the output.) In the case of parallel communications, control the exchange of data either by polling using software (check the data), or by applying an interrupt (NMI) using PC6. When applying an NMI using PC6, however, it is necessary to take noise into account because an NMI will be generated by a momentary change in PC6.

③ Serial communications

Serial communications can be performed in one of two single directions, from PC4 (output from one's own side) \rightarrow PC5 (input to opposite side), or from PC5 (input to one's own side) \leftarrow PC4 (output from opposite side). Serial and parallel conversion and interrupt (NMI) generation (when data is received) accompanying the receiving or sending of data take place automatically when the hardware is connected to these terminals. To perform serial communications, set TON and RON of I/O port O5H to "1". By doing this, PC4 will automatically become the output, and PC5 the input. These settings will take priority over the PC4 and PC5 input/output settings. Bits other than those of PC4 and PC5 will become the settings of I/O port O2H. (Like (2), never make both terminals the output.) When performing serial communications only, be sure to set NINT of I/O port O2H to prevent PC6 from generating an NMI.

22 PROPERTY OF SEGA

④ Coexistence of parallel and serial communications

When performing serial communications, PC4 and PC5 are used to send and receive serial data. parallel communications can be performed using the bits other than these. An NMI can be generated by PC6 and also by receiving of serial data. In the former case, care must be taken because PC6 goes not have a data receiving flag such as the serial RXRD. The blocks of the circuit used to generate these NMI are shown below.

Flip-flop for parallel communication

Reading of serial data

40 - 50873 27 - 1724 - 260 - 605 - 652 - 652

Flip-flop for serial communication

An NMI is generated when one of the two reset flip-flops is set. (This is because an NMI is generated not when the pulse level is LOW but when the pulse falls.) It should be appreciated that it is necessary to reset the set flip-flop so that the next NMI can be generated.

- END -

CONFIDENTIAL 2.2 PROPERTY OF SEGA