
SNASM2.1 Saturn
Development System

User’s Manual
Contents

Setup

Environment

The Assembler

The Debugger

Utilities

Index

IMPORTANT
The information contained in this publication is subject to change without notice. This
publication is supplied “as is” without warranty of any kind, either express or implied,
including but not limited to the implied warranties or conditions of merchantability or
fitness for a particular purpose. In no event shall Cross Products be liable for errors
contained herein or for incidental or consequential damages, including lost profits, in
connection with the performance or use of this material whether based on warranty,
contract, or other legal theory.

This publication contains proprietary information which is protected by copyright. No
part of this publication may be reproduced in any form, or stored in a database or
retrieval system, or transmitted or distributed in any form by any means, electronic,
mechanical photocopying, recording, or otherwise, without the prior permission of
Cross Products Limited.

SNASM2.1 Saturn User’s Manual
Revision History:
Revised, 21 August 1995
Selected Preliminary Release, 28 July 1995

SNASM2 Saturn User’s Manual
Revision History:
Revised, March 1995
Revised, February 1995
Revised, January 1995
Preliminary Release, December 1994

© 1994, 1995 Cross Products Limited. All rights reserved.

SNASM2, the SNASM2 logo, Cross Products, and the Cross Products logo are
registered trademarks of Cross Products Limited. All other product names and services
in this manual are trademarks or registered trademarks of their respective companies.

Contents

 i

Contents

Setup

1 Setup... 1-1
1.1 About the Hardware Setup ..1-2
1.2 CartDev Rev. B and Modified Saturn1-6
1.3 CartDev Rev. B and Saturn

Programming Box..1-8
1.4 Testing the Hardware Setup..1-13
1.5 About the Software Setup ...1-15
1.6 Troubleshooting...1-18

Environment

2 The SNASM2 Environment 2-1
2.1 The SNASM2 Main Menu..2-2

The Assembler

3 Running The Assembler ... 3-3
3.1 Command-line Use..3-3

4 Source Code Syntax.. 4-1
4.1 Instruction Set ...4-1
4.2 Statement Format..4-13
4.3 Labels and Symbols ..4-16
4.4 Constants ..4-21
4.5 Expressions...4-33

5 Assembler Directives .. 5-1
5.1 Overview ...5-1
5.2 Changing Directive Names..5-3
5.3 Equates ...5-5
5.4 Defining Data...5-16
5.5 Changing The Program Counter5-25
5.6 Listings ..5-32
5.7 Including Other Files ...5-34
5.8 Setting Target Parameters ..5-39
5.9 Conditional Assembly..5-41
5.10 Manipulating Strings..5-55
5.11 Modules...5-58

Contents

 ii

5.12 Options and 68000 Optimisations................................... 5-62
5.13 Custom Errors and Warnings.. 5-70
5.14 Linking... 5-72

6 Macros ..6-1
6.1 Introducing Macros.. 6-2
6.2 Macro Parameters... 6-5
6.3 Short Macros... 6-14
6.4 Advanced Macro Features.. 6-17

7 Sections and Groups...7-1
7.1 Overview ... 7-1
7.2 Introduction to Sections and Groups................................. 7-2
7.3 Sections .. 7-5
7.4 Groups .. 7-15

The Debugger

8 The Debugger...8-1
8.1 About the Debugger.. 8-1
8.2 Running the Debugger.. 8-2
8.3 The Debugger Interface .. 8-13
8.4 The Main Window ... 8-16
8.5 Code Windows.. 8-30
8.6 The Registers Window.. 8-38
8.7 The Memory Window .. 8-40
8.8 The Watch Window... 8-46
8.9 The Program Window ... 8-48
8.10 The Breakpoints Window .. 8-53
8.11 The Log Window ... 8-54
8.12 The File Viewer Window ... 8-55
8.13 The Local Vars Window .. 8-56
8.14 Breakpoints ... 8-57
8.15 Expressions .. 8-67
8.16 Expression Formatting .. 8-72

Utilities

9 SNMAKE ...9-1
9.1 Editor Macros for SNMAKE... 9-2
9.2 Project Files .. 9-3
9.3 Command-line Syntax... 9-12

Contents

 iii

10 SNLIB.. 10-1
10.1 Running SNLIB..10-1

11 SN2G... 11-1
12.1 About SN2G ..11-1
12.2 Command-line Syntax ...11-1
12.3 Considerations and Limitations11-2

Appendix

A Hitachi Assembler Compatibility A-1
A.1 Introduction... A-1
A.2 Overview of Syntax Differences A-3
A.3 Program Elements.. A-4

Contents

 iv

List of Figures

 v

List of Figures
Figure 1-1. CartDev Rev. B and Modified Saturn.. 1-7
Figure 1-2. CartDev Rev. B and Saturn Programming Box 1-9
Figure 1-3. Removing the screws from the Programming Box rear panel 1-10
Figure 1-4. Removing the Programming Box cover 1-11
Figure 1-5. Connecting the NMI Cable.. 1-12
Figure 7-1. Partitioning target memory into logical blocks 7-3
Figure 8-2. The Main debugger window.. 8-16
Figure 8-1. The Registers window. ... 8-38
Figure 8-2. The Memory window... 8-40
Figure 8-2. The Breakpoint Configuration dialog box................................ 8-59

List of Figures

 vi

This is the only information this page contains.

List of Tables

 vii

List of Tables
Table 1-1. Troubleshooting the hardware 1-18
Table 2-1. SNASM2 Main Menu keys ... 2-2
Table 3-1. SH2 assembler filenames and default extensions. 3-6
Table 3-2. 68000 assembler filenames and default extensions. . 3-7
Table 3-3. Assembler command-line switches............................ 3-9
Table 3-4. Assembler 68000 command-line quirks................... 3-12
Table 4-1. SNASM2 SH2 Instruction Set 4-2
Table 4-1. SNASM2 68000 Instruction Set. 4-3
Table 4-1. Addressing Modes ... 4-4
Table 4-1. Addressing Modes ... 4-5
Table 4-1. Pre-defined constants .. 4-27
Table 4-1. Operator precedence ... 4-35
Table 4-1. Addressing modes used by ADDRMODE................ 4-36
Table 4-1. Symbol types. .. 4-42
Table 5-1. Assembler command-line optimisations. 5-67
Table 6-1. Conditional assembly macros. 6-16
Table 8-1. Files used by the debugger.. 8-3
Table 8-1. Debugger command-line switches............................. 8-6
Table 8-1. Mode and Width combinations for memory searches.8-43
Table 8-1. Format specifier characters and their effects........... 8-74
Table 9-1. SNMAKE macro functions. .. 9-9
Table 9-2. SNMAKE command-line switches. 9-12
Table 10-1. SNLIB command-line switches. 10-1

List of Tables

viii

This is the only information this page contains.

5Setup
About the Hardware Setup

CartDev Rev. B and Modified Saturn

CartDev Rev. B and Saturn Programming Box

Testing the Hardware Setup

About the Software Setup

Troubleshooting

1

1-1

1 Setup
This section shows you how to setup the SNASM2 hardware and
software and is organised as follows.

Hardware Installation gives a step-by-step guide to setting up and
testing the target hardware.

Software Installation provides supplementary information to the
on-screen instructions given in the SNASM2 Install program.

Troubleshooting offers some general advice on correcting any
problems with the development system.

Important

The SNASM2 documentation does not attempt to teach you about:

Programming the SEGA Saturn
Programming the Hitachi SH2 processor

See the following included documentation for information about the
subjects not covered by the SNASM2 documentation:

Hitachi SH2 Programming Manual
Hitachi SH2 Hardware Manual

Setup

1-2

1.1 About the Hardware Setup
This section shows how to setup the Saturn Development System
hardware. There are two hardware setups: CartDev Rev. B with
Modified Saturn; and CartDev Rev. B with Programming Box. This
section also provides a guide to configuring the supplied Adaptec
1542CF SCSI Adapter and connecting the Programming Box NMI
Cable.

1.1.1 If You Already Have a SCSI Adapter
It is recommended that you install the supplied SCSI Adapter to
provide a second SCSI chain for the CartDev. Problems have been
known to occur when other devices, such as a hard disk or CD ROM
drive, are present on the same chain as the CartDev. For this reason the
CartDev should be the only device on the SCSI chain.

About the Hardware Setup

1-3

1.1.2 Configuring the SCSI Adapter
You may need to configure the SCSI Adapter to work with your
existing development PC. The exact configuration will depend on the
setup of the development PC. Before installing the SCSI Adapter you
should check the settings of any cards in the development PC to avoid
any potential conflicts.

To setup the SCSI Adapter to work with your development PC you
may need to change one or more of the following Switch Block or
SCSISelect settings:

Switch Block Settings

Termination

By default the termination is Software Controlled (SW1 OFF or Open).
Use this default setting.

I/O Port

By default the I/O Port address is 330-333h (SW2-4 OFF or Open).
The I/O Port address should not normally require changing.

Floppy Controller

By default the floppy controller is enabled (SW5 ON or Closed). The
floppy controller should be disabled by setting SW5 to OFF or Open.

BIOS

By default the BIOS resides at DC000h. The BIOS address should be
changed or turned off (SW6-8 ON or Closed) so that it does not
conflict with existing cards in the development PC.

SCSISelect Settings

The SCSI Adapter is supplied with the SCSISelect program. This
program allows most of the option settings to be changed without
reconfiguring the SCSI Adapter. After the SCSISelect program has
been installed you may have to change some of the settings as shown
below. To use the SCSISelect software boot the development PC and
type Ctrl+A when prompted.

Setup

1-4

Interrupt (IRQ) Channel

By default the SCSI Adapter uses IRQ 11. This may conflict with other
cards and have to be changed to a different channel e.g. IRQ 9.

DMA Channel

By default the SCSI Adapter uses Channel 5. This may conflict with
other cards and have to be changed to a different DMA Channel e.g.
Channel 6.

SCSI ID

By default the SCSI Adapter uses SCSI ID 7. This should not normally
require changing.

Example Configuration

An example CONFIG.SYS is shown below. In this example the
development PC uses two different SCSI Adapters to provide separate
SCSI chains for peripherals and the CartDev. The peripherals chain is
hosted by a Adaptec 2842VL SCSI Adapter card and has two SCSI
devices: a hard disk and a CD ROM drive. The CartDev chain is hosted
by a Adaptec 1542CF SCSI Adapter card and has a single SCSI device:
the Saturn CartDev. Note that the CartDev ASPI driver must be
installed before any other ASPI drivers otherwise the CartDev will
not be recognised.

...
Rem For 1542CF Adaptec Card (CartDev):
DEVICE=C:\SCSI\ASPI4DOS.SYS /D
Rem For 2842VL Adaptec Card (HD and CD-ROM):
DEVICE=C:\SCSI\ASPI7DOS.SYS /D
DEVICE=C:\SCSI\ASPICD.SYS /D:ASPICD0
...

About the Hardware Setup

1-5

1.1.3 Configuring the CartDev
The CartDev requires minimal configuration before it can be used.
There are two settings that may require configuring; the SCSI ID and
SCSI Termination.

SCSI ID

Set the SCSI ID rotary switch to an unused ID (as defined by the
existing configuration of the development PC) between “2” and “6”. A
typical setup uses SCSI ID 5.

Termination

The CartDev should be at the end of the SCSI chain and so should
be terminated. How you set the termination depends on the type of
TERM (SCSI termination) switch used in the supplied CartDev. If
the CartDev has a TERM slider switch set the switch to “1” (ON)
to terminat ethe CartDev. If the CartDev has a TERM toggle
switch set the switch to “0” (OFF) to terminate the CartDev.

1.1.4 CartDev Power On LED Sequence
When the CartDev is powered on both STATUS LEDs will light for a
brief period and then LED0 will blink. LED1 will be on during SCSI
communications.

Warning NEVER power the Saturn (or Programming Box) before powering
the CartDev. Doing so may damage the Saturn (or Programming
Box).
ALWAYS power off the Saturn (or Programming Box) before
powering off the CartDev.

Setup

1-6

1.2 CartDev Rev. B and Modified Saturn

1.2.1 Setting up the Hardware
To setup the development system hardware:

1. Install the SCSI Adapter as described in the supplied Adaptec
documentation, with reference to “Configuring the SCSI
Adapter” on page 1-3 of this manual.

2. Connect the SCSI Adapter to the CartDev SCSI connector
(located on the rear of the CartDev) using the supplied SCSI
cable.

3. Connect the Saturn NMI cable to the CartDev SATURN
CONTROL INTERFACE connector (located on the rear of the
CartDev).

4. Connect the CartDev Interface cable to the Saturn unit.

5. Plug the 5V power supply cable into the CartDev.

6. Plug the Saturn AC power cable and CartDev power supply
cable into the outlets.

7. Turn the development PC on.

8. Install the SCSISelect software according the the supplied
Adaptec documentation. Note that the CartDev ASPI driver
must before any other ASPI drivers otherwise the CartDev
will not be recognised.

The SCSI Adapter may require configuring using SCSISelect.
See “SCSISelect Settings” on page 3 for more information.

Note See also “CartDev Power On LED Sequence” on page 5.

CartDev Rev. B and Modified Saturn

1-7

 Figure 1-1. CartDev Rev. B and Modified Saturn

Setup

1-8

1.3 CartDev Rev. B and Saturn
Programming Box
This section shows how to setup the CartDev Rev. B and Saturn
Programming Box hardware. The Saturn Programming Box is supplied
with the NMI Cable already connected. If this was not the case you will
have to connect the NMI Cable according to the instructions shown
below, otherwise continue to the next section.

1.3.1 Setting up the Hardware
To setup the development system hardware:

1. Install the Adaptec SCSI adapter as described in the supplied
Adaptec documentation, with reference to “Configuring the
SCSI Adapter” on page 1-3 of this manual.

2. Connect the Adaptec SCSI adapter to the CartDev SCSI
connector (located on the rear of the CartDev) using the
supplied SCSI cable.

3. Connect the Programming Box NMI cable to the CartDev
SATURN CONTROL INTERFACE connector (located on the
rear of the CartDev). See “Programming Box NMI Cable
Connection” on page 10 if the NMI Cable is not already
connected to the Programming Box.

4. Connect the CartDev Interface Cable to the Programming Box.

5. Plug the 5V power supply cable into the CartDev.

6. Plug the Programming Box AC power cable and CartDev
power supply cable to the outlets.

7. Turn the development PC on.

8. Install the EZ-SCSI software according to the supplied
Adaptec documentation. Note that the CartDev ASPI driver
must before any other ASPI drivers otherwise the CartDev
will not be recognised.

The SCSI adapter may require configuring using the supplied
Adaptec SCSI software. See “SCSISelect Settings” on page 3
for more information.

CartDev Rev. B and Saturn Programming Box

1-9

 Figure 1-1. CartDev Rev. B and Saturn Programming Box

Note See also “CartDev Power On LED Sequence” on page 5.

Setup

1-10

1.3.2 Programming Box NMI Cable Connection
This section shows how to connect the NMI cable to the Saturn
Programming Box.

To connect the NMI Cable:

1. Remove the two screws, labelled ➀ in Figure 1-1 below, from
the Programming Box rear panel.

 Figure 1-1. Removing the screws from the Programming Box rear
panel

CartDev Rev. B and Saturn Programming Box

1-11

2. Remove the two screws, labelled ➁ in Figure 1-2 below, from
the Programming Box side panels and remove the cover.

 Figure 1-2. Removing the Programming Box cover

Setup

1-12

3. Plug the Programming Box NMI Cable into connector CN8,
labelled ➂ in Figure 1-3 below, on the Programming Box
motherboard.

 Figure 1-3. Connecting the NMI Cable

4. Attach the grounding lug to a Programming Box chassis screw.

5. Replace the cover and screws.

Testing the Hardware Setup

1-13

1.4 Testing the Hardware Setup
Before installing the SNASM2 software you should test that the
development hardware is functioning correctly. Performing a test at
this stage helps to isolate possible reasons for failure in the event that
the complete system does not function correctly.

Before proceeding check that:

• The Adaptec card is correctly installed
• The ASPI software is correctly installed
• The CartDev is correctly terminated
• The CartDev Termination Power light is on

1.4.1 Hardware Setup Test
To test the development hardware:

• Reboot the development PC. During the boot sequence there will
be a number of messages displayed on the screen. There are two
messages that relate to the functioning of the development
hardware, described below.

• The first message is displayed during the PC’s BIOS boot phase
and should be similar to

SCSI ID #0 - SEGA OA Saturn CartDev

This indicates that:

• The CartDev is turned on
• The SCSI bus is terminated correctly
• The SCSI cable between the CartDev and the Adaptec

card is connected correctly
• The Adaptec card is installed correctly.

• The second message is displayed after the PC’s BIOS boot phase is
complete and should be similar to

Host Adapter #0 - SCSI ID 5-LUN0: SEGA OA Saturn CartDev BO69 *

Setup

1-14

*In this message, BO69 refers to the CartDev firmware
revision number and may be greater than stated above.

This indicates that:

• The ASPI drivers are installed
• The ASPI drivers have located the CartDev and are able

to communicate with it.

About the Software Setup

1-15

1.5 About the Software Setup

1.5.1 Before You Start

Note The SNASM2 Install program is designed to customise the
environment of one of the supported text editors, enabling you to run
SNASM2 from within the editor. If you intend working in this way
must install one of the supported text editors before installing the
SNASM2 software. SNASM2 currently supports the following editors:

• Brief

• Multi-Edit

1.5.2 Installing the SNASM2 Software

Requirements

The SNASM2 software requires:

• IBM or 100% compatible PC with a 386 or greater processor.

• At least 2MB (4MB or greater recommended) RAM

• Approximately 5MB of free disk space.

Remember to make backup copies of the original disks before
installing the software. Keep the original disks in a safe place and
install the software from the backup copies.

Installation

To install the SNASM2 software:

1. Insert SNASM2 disk 1 in a floppy drive.

2. At the command prompt, type the letter of the drive you're
using, followed by :INSTALL and then press Enter. For
example

C:\>a:install

3. Follow the instructions on screen. You can exit the installation
at any time by pressing the Esc key.

Setup

1-16

1.5.3 Changes to AUTOEXEC.BAT
The SNASM2 Install program can optionally make changes to your
AUTOEXEC.BAT file. You will be prompted to accept or reject each
change before it is made. This section describes the changes that can be
made.

General

1. The name of the directory in which the SNASM2 software was
installed can be added to the PATH variable.

Brief Variables

1. -MSNASM and -MSNASM1 can be added to the BFLAGS
line. This enables the SNASM2 macros to be invoked
automatically when Brief starts up.

2. A variable can be setup to tell Brief to start a make (via the
SNMK_RUN macro) when Alt+F10 (the compile key in Brief)
is pressed. The variable is of the form BCxxx, where xxx is the
default filename extension for the default source code type. For
example, if this is to be ‘.SH2’ the line:

set bcsh2=snmk_run

is added to AUTOEXEC.BAT.

3. If Brief EMS/XMS swapping is switched off (no ‘M’ in the
BFLAGS line) the install program can add -M to that line to
switch it on. This is recommended to provide more
conventional RAM during a make.

4. If it is not already set, install will recommend that the BFILE
variable is set to ‘STATE.RST’ . This is to give status to files
saved in the current directory. Accepting this recommendation
will add the following line to AUTOEXEC.BAT:

set bfile=state.rst

About the Software Setup

1-17

5. The BTMP variable can be pointed to a fast disk (usually a
RAM disk) to facilitate disk swapping when necessary.
Accepting this prompt will add the following line to
AUTOEXEC.BAT:

set btmp= x:

where x is the specified disk drive letter.

Multi-Edit

No changes are made to your AUTOEXEC.BAT file.

Setup

1-18

1.6 Troubleshooting
Table 1-1 below provides possible remedies for the most common
hardware related problems. If after trying to correct the problem the
hardware still does not function correctly please contact technical
support for assistance.

Problem Reason

The Adaptec card fails to
see the CartDev.

The CartDev may not be powered
up.

The Adaptec SCSI ID may be
conflicting with other SCSI
adaptors.

The CartDev SCSI ID may be
conflicting with other SCSI devices.

The debugger fails to see
the CartDev.

The target hardware may not be
connected properly. When the
debugger successfully sends the
monitor code to the target the
standard SEGA copyright text will
appear briefly.

Table 1-1. Troubleshooting the hardware

5The SNASM2
Environment

The SNASM2 Main Menu

2

2-1

2 The SNASM2 Environment
The SNASM2 development system can be used from within two
supported text editors; Brief and Multi-Edit. SNASM2 is supplied with
a set of macros to customise these editors enabling you to use
SNASM2 from within your favourite programming editor.

The SNASM2 Software Installation program can optionally customise
an editor, using the editors’ macro language, to provide a development
environment for the SNASM2 toolset.

The SNASM2 Development Enviornment provides menu driven
access to the SNAMS2 development tools and extra functions. This
section describes the SNASM2 environment, detailing menu options
and keyboard controls.

Project Files

See also
“SNMAKE”

on page 9-1.

The behaviour of menu commands is determined by the contents of a
specified Project File. You must have at least one project file for
commands to function.

The SNASM2 environment relies on the creation of a Project File for
each project the user is undertaking. The project file contains
information about the file dependencies for a project and the rules
governing how the output file(s) can be created. The SNMAKE utility
uses the project file to determine which targets have dependants that
have been updated since the target file was created, and therefore
which targets must be recreated from their dependants. This means that
commands and their options must be put into the project file in the
same way as they would be entered from the command-line.

The SNASM2 Environment

2-2

2.1 The SNASM2 Main Menu
The SNASM2 Main Menu is invoked by pressing Alt+F9. The menu
items and options are discussed in sequence below. Navigation through
the menus is performed using the Up and Down arrow keys and items
are selected using the Enter key. The Escape key will return to the
editor.

Make (Alt+F10) (Alt+F8 in Multi-Edit)

Invokes the SNMAKE utility using the current project file.

Select Project File (Ctrl+F9)

Displays a window listing all project files (‘.PRJ’) in the current
directory, highlighting the current file. Use the cursor keys to highlight
a file and Enter to select it. This will display a pop-up menu with four
items:

Select this file Makes the highlighted file the current
project file i.e. invoking the Make option
will start SNMAKE with the highlighted
project file.

Description Key

Make Alt+F10 (Alt+F8*)

Select Project File Ctrl+F9

Debug Ctrl+F10

Set Debug Mode Ctrl+D

Evaluate Ctrl+E

Jump to Label Ctrl+G

Undo Last Label Ctrl+F

Save All Buffers Alt+S

Error Window Ctrl+Q

Next Error Ctrl+N

Table 2-1. SNASM2 Main Menu keys. * Multi Edit only.

The SNASM2 Main Menu

2-3

Select and Make Make the highlighted project file current
and invoke the make utility.

Show comment lines The first line of each file, usually a
comment, is displayed to the right of the
filename. To see the remaining comments
select the file and chose Show comment
lines from the pop-up menu. This displays
all the text in the project file from the top
of the file to the [SNMAKE] label. This item
is not available in Multi-Edit.

Edit and select Edit the highlighted project file.

Debug (Ctrl+F10)

Invokes the debugger specified in the current project file.

Set Debug Mode (Ctrl+D)

Selecting this option brings up a sub-menu with two options: On and
Off, one of which will be highlighted. These options control the setting
of the special macro ‘$!’ in the project file. This macro expands to the
settings of the debug and info switches on the SNASM2 command-
line. Info mode is always on when SNMAKE is invoked from within
an editor. This displays a Status window during assembly allowing
progress to be monitored. Debug mode can be set from this menu
option, determining whether the program being made, (assuming it is
being downloaded to a target machine) is run immediately (debug
mode Off) or waits with the program counter set to the value specified
by the user with the REGS directive (debug mode On). Note that this
control depends on tthe correct use of the special macro ‘$!’ in the
project file.

Evaluate (Ctrl+E)

This option invokes the expression evaluator specified in the current
project file. Any text highlighted in the current window is passed to the
expression evaluator, otherwise further input is requested.

The SNASM2 Environment

2-4

Jump to label (Ctrl+G)

See also
“Labels and

Symbols” on
page 4-16.

This option examines the current cursor position and determines if it is
on a valid label. If so it jumps to that label, if not it prompts for a label
name to look for.

Undo last label (Ctrl+F)

This option undoes the effects of the last Jump to label.

Save all buffers (Alt+S)

This option saves all buffers currently being edited.

Error Window (Ctrl+Q)

This option opens an Error window displaying the current contents of
the error file ERRORS.ERR located in the current directory. This is the
file to which all error output is redirected by SNMAKE. If there are
errors (in a format that this function can understand) they can be
stepped through using the Up and Down arrow keys. Pressing Enter
on a highlighted error will displays the location of the error in the
relevant source file. The Home and End keys can be used to move
from the top and bottom of the error buffer respectively and pressing
Ctrl whilst using the up and down arrow keys allows the user to move
around in the error buffer line by line. Striking enter on a line that the
macros do not recognise as containing an error message will result in
an error message to that effect.

Next Error (Ctrl+N)

This option scans the file ERRORS.ERR and moves the cursor to the
next error in the source code. Repeated invocations will step through
the errors. If no further errors can be found a message to that effect is
displayed on the status line.

5The Assembler
Running The Assembler

Source Code Syntax

Assembler Directives

Macros

Sections and Groups

3

3-1

The Assembler
The assembler translates assembly language source files into binary
files which can be loaded into memory and executed. The SNASM2
assembler is a one-pass assembler with a sophisticated patch-back
system, able to handle all forward references including forward
referenced equates. Source statements are processed to produce a
relocatable object file in the industry standard COFF (Common Object
File Format) file format. This allows mixed language projects and in
addition support is provided for linking with Sierra C and GNU format
COFFs.

The linker is fully integrated into the assembler to produce a ‘linking
assembler’ that loads the required modules and resolves external
references to produce a final loadable output or an object module for
further linking. This provides flexibility over which parts of code are
assembled into object files, those assembled on every build and those
stored in libraries. The assembler also has an extensive superset of
features found in other assemblers including:

• Rationalised syntax whilst maintaining maximum backwards
compatibility.

• Multiple processor support.
• Binary includes of files or file subsets.
• A partial expression evaluator; the link software includes a full

expression evaluator.
• Extensive group attributes including specific support for ROM

image generation.
• Flexible Macros with parameter list handling.
• Comprehensive conditional assembly structures
• Optional code optimisation.
• Map file showing the size and location of sections, groups and

symbols in memory and also the amount of room left in groups.
• Informative listings

This part describes the assembler in detail, covering:

• Running The Assembler
• Source Code Syntax
• Assembler Directives
• Macros
• Sections and Groups

The Assembler

3-2

This is the only information this page contains.

Command-line Use

3-3

3 Running The Assembler
This section shows how to run the assembler from the command-line.
To run the assembler from within one of the supported text editors see
Chapter 2, “The SNASM2 Environment”.

3.1 Command-line Use
The OPT

directive is
described on

page 5-68.

This section shows you to invoke the assembler from the command-
line and describes all the switches, options and optimisations available
from the command-line. The options and optimisations can also be set
from within assembly code source files using the OPT directive.

3.1.1 Command-line Syntax
This section shows how to invoke the assembler from the command-
line and describes all the switches used to control the assembler
options and optimisations. The command-line consists of a series of
optional switches, separated by white space, followed by the names of
files to be used during the assembly process. The syntax is:

See also
“Assembler
Command

Files” on
page 3-13.

[snasm68k|snasmsh2] Switches Source,Object,Map,List

or

[snasm68k|snasmsh2] Switches @CommandFile

To halt the assembly type Ctrl+C or Ctrl+Break. This halts the
assembler after deleting any temporary or partially written output files.

See also
“Example 2”
on page 3-4.

The assembler can accept multiple source files using the format
‘Filename.Ext+Filename.Ext+...’, treating each file as if it were an
include. Note that when assembling in this way you must specify the
standard source file extensions so that the assembler can, for example,
differentiate between source files and COFF files. If no extension is
given, the assembler will choose source files over object files.

Important

See also
“Example 3”
on page 3-5.

SNASM68K can also download object code direct to the target or
simultaneously create a COFF file and download object code to the
target.

Running The Assembler

3-4

SNAMSH2 cannot download directly to the target. The assembler must first
generate a COFF file that can subsequently be downloaded to the target
using the debugger.

68000

Example 1

The following example assembles the source file TEST.68K and outputs the
object code to TEST.COF. The assembler also generates a map file,
TEST.MAP, but produces no listing or temporary files.

snasm68k test.68k,test.cof,test.map

SH2

Example 1

The following example assembles the source file TEST.SH and outputs the
object code to TEST.COF. The assembler also generates a map file,
TEST.MAP, but produces no listing or temporary files.

snasmsh2 test.sh,test.cof,test.map

68000

Example 2

The following example assembles two source files, TEST1.68K and
TEST2.68K, and the object file TEST1.COF. The resulting object code is
sent to TEST.COF and produces a single map file, TEST.MAP.

snasm68k test1.68k+test2.68k+test1.cof,test.cof,test.map

SH2

Example 2

The following example assembles two source files, TEST1.SH and
TEST2.SH, and the object file TEST1.COF. The resulting object code is sent
to TEST.COF and produces a single map file, TEST.MAP.

snasmsh2 test1.sh+test2.sh+test1.cof,test.cof,test.map

Command-line Use

3-5

68000

Example 3

This example assembles the source file TEST.68K, downloads the object
code to target 4 and generates a COFF file, including source debug info (/

sdb), called TEST.COF but does not run the code (/d).

snasm68k /d /sdb test.68k,t4:test.cof

To subsequently enter the debugger with the debug info use:

snbugsat -t4:test.cof

SH2

Example 3

This example assembles the source file TEST.SH and generates a COFF file,
TEST.COF, that includes source debug info (/sdb).

snasmsh2 /sdb test.sh,t1:test.cof

To subsequently enter the debugger with the debug info use:

snbugsat -t4:test.cof

68000

Example 4

This example is similar to Example 1 except that the object code is sent to
target 4.

snasm68k test.68k,t4:,test.map

Running The Assembler

3-6

3.1.2 File Extensions
The file types and default extensions used by the assemblers are given
below.

File
Default
Extension Description

Source SH, .ASM, .S Contains the source code to be
assembled. If no source file is
specified the assembler will print a
help message and a description of
the command-line syntax.

Object .COF, .O,
.OBJ

Receives the object code output. If
no file is specified then object code
will be not be generated unless
group FILE statements are present.
(See page 7-15. for more
information about group attributes.)

Library .LIB, .A Library files in either SNLIB format
or from the GNU archiver.

Binary .BIN Binary Files.

List .LST Receives any listing output.

Map .MAP Contains information about symbols
and the length, location and
attributes of groups and sections. In
addition, all files used by the
assembler in the current run are
listed, indicating which files have
been read and written and how they
were used. The current directory at
the time of assembly is also
displayed.

S-Records .S19 Motorola S-records.

Table 3-1. SH2 assembler filenames and default extensions.

Command-line Use

3-7

File
Default
Extension Description

Source .68K, .ASM,
.S

Contains the source code to be
assembled. If no source file is
specified the assembler will print a
help message and a description of
the command-line syntax.

Object .COF, .O,
.OBJ

Receives the object code output. If
the object code is to be sent to a
target the filename has the format
‘Tn:’ where n is the SCSI device
number of the target. If no file is
specified then object code will be
not be generated unless group FILE
statements are present. (See page 7-
15. for more information about
group attributes.)

Library .LIB Library files.

Binary .BIN Binary Files.

List .LST Receives any listing output.

Map .MAP Contains information about symbols
and the length, location and
attributes of groups and sections. In
addition, all files used by the
assembler in the current run are
listed, indicating which files have
been read and written and how they
were used. The current directory at
the time of assembly is also
displayed.

S-Records .S19 Motorola S-records.

Table 3-2. 68000 assembler filenames and default extensions.

Running The Assembler

3-8

Source Filename Extensions

If a source filename is specified with no extension and does not exist
with that name, the assembler will search for a file with the specified
root name and one of the default extensions. Source files can also take
any extension that was specified as part of the software installation
process. Note that it is recommended that output files are specified
without extensions; the assembler will automatically append the
appropriate extension.

Ignoring Specified Files

The assembler can be made to ignore files specified on the command-
line. This provides the ability to, for example, specify a filename for a
map or list file but prevent them from being generated when it is
inconvenient. To prevent a file from being generated prefix the
filename with a ‘!’ character. The assembler then treats the filename as
blank. This feature is particularly useful in make, project or batch files.

Concatenating Map and List Files

Map and List filenames can be suffixed with a ‘+’ to concatenate
output generated by the assembler with existing files of the same name.

3.1.3 Switches
The table below describes the switches available from the command-
line. To identify a switch to the assembler it must be immediately
preceded by a ‘/’ or ‘-’.

Note

There must be at least one space between a switch and any
parameters and that this is not compatible with versions of the
assembler prior to version 2.0.

Command-line Use

3-9

Switch Description

[- |/]? Displays on-line help describing the
syntax for switches, options and
optimisations.

[- |/]b Size Set the Size of the input buffers from
1K-64K, the default being 16K. Note
that there must be at least one space
character between b and Size.

[- |/]coff Change between big endian and little
endian COFF output file. Note that the
endianness of a COFF file refers only
to its structure and not to the
endianness of the processor to which it
is loaded. By default the COFf files is
generated in the native endianess of
the host processor.

[- |/]dmax Num Controls the maximum data size that
can be generated for a single DS or
DCB directive. Num is in the range 1-
32 where dmax=2Num. By default Num
is set to 16 (i.e. dmax=264) allowing
up to 64K of space to be reserved by
one .DATA, DS or DCB statement.
The assembler will generate an error if
the size exceeds 2dmax.

[- |/]e

Symbol{=[Val|" Str"]}
{ ; Symbol{=[Val|" Str"]}}...

Equate a symbol to a value or a string.
The symbol will be set to 1 if no value
or string is specified. Multiple equates
are separated by semicolons (‘;’).

[- |/]emax NumErrors Abort the assembly after the number
of errors exceeds that specified by
NumErrors. The default value of
NumErrors is 30; a value of zero will
cause the assembly to continue
regarless of the number of errors
generated.

Table 3-3. Assembler command-line switches.

Running The Assembler

3-10

[-|/]g Write non-global symbols to linker
object file.

[- |/]hex Number Set the width of hexadecimal output
in the listing file from two to eight
words, the default being four.

[- |/]i Display information window during
assembly.

[- |/]im Relax rules about importing symbols.
If generating linkable output any
undefined symbols are automatically
marked as imported. Without the im
switch any such undefined symbols
which are not explicitly imported will
generate an error.

[- |/]j Dir [;Dir]... Specify the search directory for
INCLUDE file. If an INCLUDE
filename does not specify a path, by
default the assembler first looks for
input files in the current directory. If
not found there the assembler looks in
the directories built up using the ‘j’
switch. Multiple j switches can be
specified each one adding to...

[- |/]k Enable additional conditional
assembly structures. These are
implemented via macros and
described on page 6-16.

[- |/]l Produce linkable output file; allow
unresolved external references.

[- |/]lnos Show source code line numbers in the
listing file.

Switch Description

Table 3-3. Assembler command-line switches.

Command-line Use

3-11

[- |/]o Options Set assembler options and
optimisations. Note that there must be
at least one space character between
the switch and the parameter. For
more information on Options see
“Options and 68000 Optimisations”
on page 5-62.

[- |/]p Produce pure binary output file. See
also the rom switch.

[- |/]q Quirks Enable quirks. Quirks are special
options that enable certain features
specific to SNASM version 1.x.
Is this relevant for Saturn?

[- |/]rom Produce ROM image. This produces a
pure binary output file with the space
between groups padded to place them
at their ORG addresses. See also the p
switch.

[- |/]s Produce Motorola S-Record output
file.

[- |/]sdb Output source debug information to
COFF file.

[- |/]t Truncate values in DC.B and DC.W
directives to bytes and words
respectively.

[- |/]w Write equates to symbol table.

Switch Description

Table 3-3. Assembler command-line switches.

Running The Assembler

3-12

3.1.4 68000 Quirks
Quirks are known incompatibilities between SNASM2 68000 and
version 1.x. The behaviour of the assembler prior to version 2
occasionally became ‘eccentric’ as more features were added to it. This
behaviour has been rationalised in SNASM2 but for backwards
compatibility it is possible to introduce these ‘quirks’ into the
assembler. These quirks may not be supported in future releases so it is
strongly recommended that you check through your source code to
identify anything using a quirk and change it to be compatible with
SNASM2.

The command-line quirks are described below. Do not use white space
between the quirk name and the ‘+’ or ‘-’ and separate multiple quirks
with commas.

Quirk Description

fl+/- Functions in Lower Case Specify names of functions
and pre-defined constants in lower case if the case
sensitivity option is enabled.

mc+/- Macro Continuation Character. Allows the use of ‘\’
as a line continuation character in macro calls and on
the first line of a macro definition.

mp+/- Macro Parameter Lower Case. Sets unquoted macro
parameters to lower case if the assembler is set to be
case insensitive.

sa+/- Section Alignment. Aligns a section re-opened without
a size modifier to the previously defined alignment for
that section. This applies to both the SECTION and
POPS directives.

sc-/+ Sierra C SDB format. Set this quirk if, when using
SDB, source and assembler loose synchronisation.

Table 3-4. Assembler 68000 command-line quirks.

Command-line Use

3-13

3.1.5 Assembler Command Files
A command file contains assembler command-line parameters
separated by white space or line breaks. The filename must be
preceded with the ‘@’ symbol to tell the assembler that it is a
command file although this does not form part of the filename itself.
Comments can be introduced with ‘*’ or ‘#’ characters at the beginning
of a line or with a ‘;’ character anywhere in the command file.

The command file can be used in place of or in addition to command-
line parameters. If the assembler is invoked with both switches and a
command file, the switches take precedence over the contents of the
command file (which must be the last item on the command-line) as
they can be set once only.

Multiple assemblies can be specified in a single command file. The
assembler searches the command file until it finds a valid assembly
request which it then executes. The assembler then continues searching
the command file for further assembly requests. Performing multiple
assemblies using a command file is faster than invoking the assembler
for each assembly as the assembler is loaded only once.

SH2

Example

Assemble TEST.SH and output TEST.COF.
Generate the MAP file TEST.MAP but no listing or
temporary files.

test.sh,test.cof,test.map

Assemble TEST1.SH and TEST2.SH, and TEST.COF
Output TEST1.COF and generate TEST.MAP map file.

test1.sh+test2.sh+test1.cof,test.cof,test.map

#Assemble TEST.SH
#Ouput TEST.COF, including source debug info (/sdb).

/sdb test.sh,t1:test.cof

Running The Assembler

3-14

68000

Example

Assemble TEST.68k and output TEST.COF.
Generate the MAP file TEST.MAP but no listing or
temporary files.

test.68k,test.cof,test.map

Assemble TEST1.68k and TEST2.68k, and TEST.COF
Output TEST1.COF and generate TEST.MAP map file.

test1.68k+test2.68k+test1.cof,test.cof,test.map

#Assemble TEST.68k
#Ouput TEST.COF, including source debug info (/sdb).

/sdb test.68k,t4:test.cof

Instruction Set

4-1

4 Source Code Syntax

4.1 Instruction Set
The SNASM2 development system is fully compatible with the
Hitachi SH and Motorola M68000 processors. The assemblers,
SNASMSH2 and SNASM68K, support the standard Hitachi
and Motorola mnemonics and will generate code for supported
extensions of the instruction as determined by the addressing
mode. The SNASMSH2 and SNASM68K instruction sets
consists of the standard Hitachi and Motorola opcodes,
common extensions and some SNASM2 specific extensions.
The complete SNASMSH2 and SNASM68K instruction sets
are given below.

Source Code Syntax

4-2

SNASM2 SH2 Instruction Set

ADD CMPHI MOVT SHLL16
ADD.L CMPHI.L MOVT.L SHLL16.L
ADDC CMPHS MOVE SHLL2
ADDC.L CMPHS.L MOVE.B SHLL2.L
ADDV CMPPL MOVE.L SHLL8
ADDV.L CMPPL.L MOVE.W SHLL8.L
AND CMPPZ MULL SHLR
AND.B CMPPZ.L MULS SHLR.L
AND.L CMPSTR MULS.L SHLR16
BF CMPSTR.L MULS.W SHLR16.L
BF/S DIV0S MULU SHLR2
BRA DIV0S.L MULU.L SHLR2.L
BRAF DIV0U MULU.W SHLR8
BSR DIV1 NEG SHLR8.L
BSRF DIV1.L NEG.L SLEEP
BT DMULS NEGC STC
BT/S DMULS.L NEGC.L STC.L
CLRMAC DMULU NOP STS
CLRT DMULU.L NOT STS.L
CMP/EQ DT NOT.L SUB
CMP/EQ.L EXTS OR SUB.L
CMP/GE EXTS.B OR.B SUBC
CMP/GE.L EXTS.W OR.L SUBC.L
CMP/GT EXTU ROTCL SUBV
CMP/GT.L EXTU.B ROTCL.L SUBV.L
CMP/HI EXTU.W ROTCR SWAP
CMP/HI.L JMP ROTCR.L SWAP.B
CMP/HS JSR ROTL SWAP.W
CMP/HS.L LDC ROTL.L TAS
CMP/PL LDC.L ROTR TAS.B
CMP/PL.L LDS ROTR.L TRAPA
CMP/PZ LDS.L RTE TRAPA.L
CMP/PZ.L MAC RTS TST
CMP/STR MAC.L SETT TST.B
CMP/STR.L MAC.W SHAL TST.L
CMPEQ MOV SHAL.L XOR
CMPEQ.L MOV.B SHAR XOR.B
CMPGE MOV.L SHAR.L XOR.L
CMPGE.L MOV.W SHLL XTRCT
CMPGT MOVA SHLL.L XTRCT.L
CMPGT.L MOVA.L

Table 4-1. SNASM2 SH2 Instruction Set

Instruction Set

4-3

SNASM2 68000 Instruction Set

ABCD EOR NEGX
ADD EORI NOP
ADDA EORI to CCR NOT
ADDI EORI to SR OR
ADDQ EXG ORI
ADDX EXT ORI to CCR
AND ILLEGAL ORI to SR
ANDI JMP PEA
ANDI to CCR JSR RESET
ANDI to SR LEA ROL ROR
ASL,ASR LINK ROXL ROXR
Bcc.S LSL,LSR RTD
BCHG MOVE RTE
BCLR MOVEA RTR
BKPT MOVEC RTS
BRA MOVEM SBCD
BSET MOVEP Scc
BSR MOVEQ STOP
BTST MOVES SUB
CHK MOVE from

CCR
SUBA

CLR MOVE to CCR SUBI
CMP MOVE from SR SUBQ
CMPA MOVE to SR SUBX
CMPI MOVE USP SWAP
CMPM MULS TAS
DBcc MULU TRAP
DIVS NBCD TRAPV
DIVU NEG TST

UNLK

Table 4-1. SNASM2 68000 Instruction Set.

Source Code Syntax

4-4

4.1.1 SNASMSH2 Addressing Modes
The SNASMSH2 assembler provides addressing mode syntax
compatible with the SH2.

.

SH2 Style Description

#n Immediate
##n

Rn Direct Register

@Rn Indirect Register

@Rn+ Post-increment Indirect Register

@-Rn Pre-decrement Indirect Register

@(R0,Rn) Indirect Indexed Register
@(Rn,R0)

@(R0,GBR) Indirect Indexed GBR
@(GBR,R0)

@(disp:4,Rn) Indirect Register with
@(Rn,disp:4) Displacement

@(disp:8,GB
R)

Indirect GBR with

@(GBR,Rn) Displacement

@(disp:8,PC) PC Relative with
@(PC,disp:8) Displacement

Table 4-1. Addressing Modes

Instruction Set

4-5

4.1.2 68000 Addressing Modes
The SNASM68K assembler provides addressing mode syntax
compatible with the M68000.

.

68000 Stye Description

#n Immediate

Rn Direct Register

(Rn) Indirect Register

(Rn)+ Post-increment Indirect Register

-(Rn) Pre-decrement Indirect Register

(R0,Rn) Indirect Indexed Register
(Rn,R0)

Rn(R0)

R0(Rn)

(R0,GBR) Indirect Indexed GBR
(GBR,R0)

R0(GBR)

GBR(R0)

(disp:4,Rn) Indirect Register with
(Rn,disp:4) Displacement

disp:4(Rn)

(disp:8,GBR) Indirect GBR with
(GBR,disp:8) Displacement

disp:8(GBR)

(disp:8,PC) PC Relative with
(PC,disp:8) Displacement

disp:8(PC)

Table 4-1. Addressing Modes

Source Code Syntax

4-6

4.1.3 Literal Pools
Literals which evaluate and are too large to fit in the instruction
are placed in a literal pool and referenced using PC relative
addressing. Both long and word literals may be placed in the
literal pool. Unless specified with ‘##’ literals which do not
evaluate are always placed in the literal pool. Note that the
literal pool is only available to the MOV instruction.

LITS

The LITS directive causes the literal pool to be emitted. When
emiting the literal pool, any pool entries whose values are
known and identical are merged together. Similarly, simple
forward referenced symbols are also merged. Expressions that
have not evaluated are never merged, even if they are identical.

Syntax

lits [.Qualifier]

where:

Label is an optional symbol defined by this
statement.

Qualifier is an optional qualifier that can be:

.w causes LITS to emit word literals only

.l causes LITS to emit long literals only

The LITS directive with no qualifier emits all
word literals followed by all long literals.

The RISC Option

Literal pools are handled differently depending on the setting of
the RISC option. With the RISC option off (risc- , the default)
literals can be specified using either ‘#’ or ‘##’.

Literals specified using ‘##’ are always generated as part of the
instruction and therefore their values must be in range. Literals

Instruction Set

4-7

specified using ‘#’ are generated in the instruction if they can be
evaluated and their value is in range. If If these literals cannot
be evaluated, for example because of a forward reference, or
their value is out of range then they are placed in the next
requested literal pool.

With the RISC option on (risc+) literals can be specified using
‘=’ or ‘#’. Literals specified using ‘=’ will always generate a
literal pool value and literals specified using ‘#’ will always be
forced into the instruction.

Source Code Syntax

4-8

Example

The annotated listing below shows the operation of the literal
pool.

= 00000006 | q1 equ 6
= 000000a0 | q1a equ 160

|
00000000: 70FF | add #-1,r0
00000002: C904 | and #4,r0
00000004: 70 | add #129,r0

Case 1. This generates an error on pass 1 with the message
“Cannot fit value 129 (0x81) into signed byte”.
This is because the literal pool is unavailable to ADD and the value
129 cannot fit into the signed byte available for the instruction.

00000005: 81
00000006: 7006 | add #q1,r0
00000008: 70@@ | add #q2,r0
0000000a: 70 | add #q1a,r0

Case 2. This generates an error on pass 1 with the message
“Cannot fit value 160 (0xa0) into signed byte”.
This is because the literal pool is unavailable to ADD and the value of
q1a (160) cannot fit into the signed byte available for the instruction.

0000000b: A0
0000000c: 70@@ | add #q2a,r0

Instruction Set

4-9

Case 3. This generates an error on pass 2 with the message
“Cannot fit value 14d into signed byte”.
This is because q2a is undefined at this point so the assembler
assumes that when q2a is defined its value will fit the instruction i.e.
#q2a is interpreted as ##q2a .

q2a is subsequently defined with a value of 333 (0x14d). The literal
pool is unavailable to ADD and the value of q2a is too large to fit the
instruction and so generates an error.

0000000e: 70FF | add ##-1,r0
00000010: C904 | and ##4,r0
00000012: 70 | add
##129,r0

Case 4. This generates an error on pass 1 with the message
“Cannot fit value 129 (0x81) into signed byte”.
This is because the literal pool is unavailable to ADD so that #129 and
##129 are equivalent causing an error for the same reasons as for
Case 1.

00000013: 81
00000014: 7006 | add ##q1,r0
00000016: 70@@ | add ##q2,r0
00000018: 70 | add
##q1a,r0

Case 5. This generates an error on pass 2 with the message
“Cannot fit value 160 (0xa0) into signed byte”.
This is because the literal pool is unavailable to ADD so that #q1a
and ##q1a are equivalent causing an error for the same reasons as
for Case 2.

00000019: A0
0000001a: 70@@ | add
##q2a,r0

Source Code Syntax

4-10

Case 6. This generates an error on pass 2 with the message
“Cannot fit value 333 (0x14d) into signed byte”.
This is because q2a is undefined at this point so the assembler
assumes that when q2a is defined its value will fit the instruction i.e.
#q2a is interpreted as ##q2a . q2a is subsequently defined with a
value of 333 (0x14d) causing an error for the same reasons as for Case
3.

0000001c: E0FF | mov #-1,r0
0000001e: E004 | mov #4,r0
00000020: D0?? | mov #129,r0
00000022: E006 | mov #q1,r0
00000024: D0?? | mov #q2,r0
00000026: D0?? | mov #q1a,r0
00000028: D0?? | mov #q2a,r0

|
0000002a: E0FF | mov ##-1,r0
0000002c: E004 | mov ##4,r0
0000002e: E0 | mov
##129,r0

Case 7. This generates an error on pass 1 with the message
“Cannot fit value 129 (0x81) into signed byte”.
This is because the “##” makes the literal pool unavailable to MOV
causing an error for the same reasons as for Cases 1 and 4.

0000002f: 81
00000030: E006 | mov ##q1,r0
00000032: E0@@ | mov ##q2,r0
00000034: E0 | mov
##q1a,r0

Case 8. This generates an error on pass 1 with the message
“Cannot fit value 160 (0xa0) into signed byte”.
This is because the “##” makes the literal pool unavailable to MOV
causing an error for the same reasons as for Cases 2 and 5.

00000035: A0
00000036: E0@@ | mov
##q2a,r0

Instruction Set

4-11

Case 9. This generates an error on pass 2 with the message
“Cannot fit value 14d into signed byte”.
This is because the “##” makes the literal pool unavailable to MOV
causing an error for the same reasons as for Cases 3 and 6.

= 00000003 | q2 equ 3
= 0000014d | q2a equ 333

|
00000038: @@@@ @@@@ 00.. | lits

Source Code Syntax

4-12

This is the only information thispage contains.

Statement Format

4-13

4.2 Statement Format
Each statement has the following general format:

LABEL MNEMONIC OPERAND(S) COMMENT

Start lea.l Stack,SP ;Initialise stack

White Space

See also
“Options

and 68000
Optimisatio

ns” on page
5-62.

Each field must be separated by white space i.e. any combination of
tabs and spaces. To improve code readability, white space is allowed
in the operand field after a comma or operator.

The White Space option determines whether the comment field starts
with white space or a semicolon. By default (ws-), white space
following the operand(s) denotes the beginning of the comment field
(which is ignored by the assembler). To avoid confusion it is
recommended that comments start with a semicolon (;). The
assembler can be made to insist on a semicolon before comments by
setting the White Space option (ws+). Setting this causes the
assembler to ignore white space in the operand field and is a highly
recommended option.

Comment Lines

The exception to the statement format is comment lines. These can
begin with a semicolon (;), an asterisk (*) or, if GNU mode is on
(g+), a forward slash followed immediately by an asterisk (/*). A
comment line can begin in any column if it begins with ‘;’ or ‘/*’ but
must start in column 1 if it begins with ‘*’. A comment line
beginning with ‘/*’ can cross line boundaries but a comment line
beginning with a ‘;’ or ‘*’ must terminate on the line it was started
on. A comment line beginning with ‘/*’ must be terminated with ‘*/’
but a comment line beginning with a ‘;’ or ‘*’ does not require a
termination character. Blank lines and lines that contain white space
only are treated as comment lines. All comments are ignored by the
assembler.

Source Code Syntax

4-14

Line Continuation Character

The maximum line size is 1024 characters. The line
continuation character ‘&’ can be used to continue a statement
on to the next line. The ‘&’ character can be used in comments
but will be interpreted as an ampersand and not as a line
continuation character. The ‘&’ character must be the last
symbol on the line.

If the 68000 Quirk Macro continuation character (mc+) is set
you can use ‘\’ as a line continuation character in macros.
Again, the ‘\’ character must be the last symbol on the line.

Statement Format

4-15

Example

opt ws+ ;White space allowed in operand
;Comments must begin with ';'

dc.b 'ab' ,'cd', 'ef';Spaces don't end operand field
dc.b 'gh','ij', 'kl'

opt ws- ;Turn off whitespace option

dc.b 'ab' ,'cd', 'ef'Whitespace starts comment
dc.b 'gh','ij', 'kl' But is OK after a comma

;Note that whitespace is always allowed in HEX strings
;at byte boundaries.

opt ws+ ;Turn on whitespace option

hex 01 02 03 04 ;Comments must begin with ';'
hex 0a0b 0c0d

opt ws- ;Turn off whitespace option

hex 01 02 03 04 First whitespace ends number
hex 0a0b 0c0d And here

4.2.1 Changing the Processor Mode
The PROC directive changes the operand mode. Use PROC to switch
between SH1 and SH2 as the operand.

Syntax

proc [sh1|sh2]

Source Code Syntax

4-16

4.3 Labels and Symbols
Symbols can contain up to 80 characters from the following
symbol set:

If a symbol is longer than 80 characters, it will be truncated and
the assembler will generate a ‘Label Truncated’ warning. The
first character of a symbol must not be a digit except for local
labels. Illegal characters such as non-printing characters will
generate an error at assembly time unless they appear in a
comment in which case they are ignored.

4.3.1 Labels
Unless defined otherwise, labels are global, that is they are
known to the whole program. Symbols that are used as labels
become symbolic addresses for actual locations in the program.
Labels are optional for all assembly language instructions and
for most assembler directives. If a label is used it must start in
column 1 unless it ends with a colon (:). The colon is not treated
as part of the label.

Note that if GNU mode is on (g+) labels must terminate in a
colon (:); this allows mnemonics to start in column 1.

Global labels must conform to the following format:

A - Z a - z 0 - 9 ? _ (underscore) . (period)

First Character Subsequent Characters

A - Z, a -z, _ A -Z, a - z, 0 - 9, _, ., ?

Labels and Symbols

4-17

4.3.2 Local Labels
See also
“Scoping

Local
Labels” on
page 4-19.

The assembler supports local labels which begin with a special
local label character but this does not form part of the label
itself. Local labels are labels that are declared local to a
particular range of source code. They exist only within this
range, known as their scope, and can be re-defined outside this
area. This makes local labels useful for loop counters and
markers.

See also
“Symbols

and
Periods”
on page

4-20.

Local labels must conform to the following format with the first
character being one of the special local label characters
specified below. The label itself can be any valid label and
begin with a digit.

.

The default local label character is ‘@’ but this can be redefined
using the assembler option. The local label character can be
redefined using the Local Label Character option, either from
the command line (l+ to toggle between ‘@’ and ‘.’ or l
Character to use one of the other characters given above) or
with the OPT directive. If the local label character is changed,
from ‘@’ to ‘.’ for example, then local labels previously defined
using ‘@’ can then only be referenced using ‘.’ as the local
label character.

First
Character

Subsequent Characters

@, ., : , ?, |, ! A -Z, a - z, 0 - 9, _ (underscore), . (period), ?

Source Code Syntax

4-18

Example

@Alert ; @ is the default
...
optl 63 ; Change to ? (63

ASCII)
?LevelOne
?Alert ; Same label as before

optl '@' ; Change back to @
@Alert ; Still same label

Labels and Symbols

4-19

4.3.3 Scoping Local Labels
See also
“Scoping

Local
Labels” on
page 4-19.

The assembler provides extensive support for controlling the
scope of local labels from the simple between non-locals form
to the more sophisticated concept of modules. Local labels and
modules are also available inside macros with further macro
specific facilities provided by the ‘\@’ parameter and the
LOCAL directive.

The between non-local labels form of scoping lets you define
local labels using the local label character only. The scope of
the local label then extends from the previous non-local label up
to but not including the next non-local label. If the descope
local labels option (d+) is enabled then the EQU, EQUR, EQUS
and SET directives cause local labels to be de-scoped.

Example

In the code below, the scope of the first @NoInc label extends
between the IncNzD0 and IncNzD1 labels. The @NoInc label can
be re-defined after the next non-local label which is IncNzD1 .
The scope of the second @NoInc label is then from IncNzD1 to
the next non-local label.

IncNzD0 tst.w d0
bne.s @NoInc
addq.w #1,d0

@NoInc rts
IncNzD1 tst.w d1

bne.s @NoInc
addq.w #1,d1

@NoInc rts

Source Code Syntax

4-20

4.3.4 Symbols and Periods
The assembler allows the use of symbols containing periods,
providing greater flexibility in choosing label names. However,
this is not recommended as there can sometimes be confusion as
to whether a period is a size modifier or part of a label.

To explain how symbols and periods are handled it is necessary
to describe the line pre-processor employed by the assembler.
This is best illustrated using an example so consider the
following source statement:

move.l length.w,d0

This statement alone does not provide enough information for
the assembler to tell if length.w is a label ‘length.w ’ or a label
'length ’ with a word modifier. To determine the correct
semantic the assembler looks first to see if length.w is a label.
If so then no further action is needed and that label value is
used; otherwise the string is scanned from right to left. Strings
are scanned from right to left for periodds. As each period is
found, the leftmost part of the symbol up to that period is

The first character encountered is a ‘w’ which does not reveal
anything. The second character is a ‘. ’ which could mean that
‘ .w ’ is a size modifier and so it is stripped from the string. The
assembler now looks again to see if the remaining characters in
the string, length , constitute a label. If this is the case then no
further analysis is required, otherwise the process is repeated
until either a label if found or an ‘undefined label error’ is
generated.

To explicitly state that length is a label enclose it in brackets:

move (Length).w,d0
Alternatively, use a backslash (‘\’) in place of the period for the
size modifier.

move Length\w,d0

Constants

4-21

4.4 Constants
The assembler supports four basic types of constants:

• Integer constants
• Character constants
• Pre-defined constants
• Assembly-Time constants

Source Code Syntax

4-22

4.4.1 Integer Constants
The assembler supports integer constants in any base from 2 to
16, the value of which must be expressible in at most 32 binary
digits. Integer constants must begin with a decimal digit with
the exception of hexadecimal and binary constants which are
prefixed with special characters; $ or 0x and % or 2_
respectively. The following sections describe these notations in
more detail. The default base is set using the RADIX directive.
At the start of assembly RADIX is set to its default value of 10.
Unless a constant specifies its own base by means of a prefix, it
is taken as a number in the base set by RADIX. For numbers in
bases 11-16, the characters A - F (or a - f) are used to represent
the digits 10 - 16 respectively.

The assembler also supports other notational forms for certain
integer constants. There a RISC style format for integer
constants which is of the form r_nnn where r is a radix from 2
to 9 and n a valid digit. In addition, hexadecimal numbers can
be specified using the ‘0x ’ C language notation.

If the alternate numeric option is enabled then you can use Intel
style suffixes to denote the radix. The integer constant, which
must begin with a valid digit for that constant, is suffixed with
the letters H, D, Q or B to specify the radix as Hexadecimal,
Decimal, Octal or Binary respectively. This does not work if the
default radix is greater than 10 as B and D are valid
hexadecimal digits.

All integer constants must begin with a decimal digit regardless
of the default base. Examples of valid constants are:

8_123 Constant equivalent to 123 octal (83
decimal)

Constants

4-23

Hexadecimal constants are prefixed with the ‘$’ or ‘0x’
characters and include the decimal values 0-9 and the letters A-
F and a-f. Examples of valid hexadecimal constants are:

0xA0 Constant equivalent to 160 decimal
$73E Constant equivalent to 1854 decimal

Binary constants are prefixed with the % character. Examples
of valid binary constants are:

%11010000000 Constant equivalent to 1664 decimal
%11 Constant equivalent to 3 decimal
2_11 Constant equivalent to 3 decimal

Source Code Syntax

4-24

4.4.2 Character Constants
A character constant is a string of up to 4 characters enclosed in
either single or double quotes (' ' or " "). The characters are
represented internally as 8 bit ASCII characters. Single or
double quotes are represented by specifying the character twice
or by delimiting one type of quote with the other. Control
characters can be represented by preceding the control character
with backslash caret (\^). Examples of valid character constants
are:

’a’ Represented internally as 00000061 hexadecimal
'abc' Represented internally as 00616263 hexadecimal
'"a' Represented internally as 00002261 hexadecimal
"""a" Represented internally as 00002261 hexadecimal
"'a" Represented internally as 00002761 hexadecimal
’\^M’ Represented internally as 0000000D hexadecimal

Note the difference between a character constant and a
character string. A character constant is an integer value and a
character string is a list of characters. Character strings are
described later.

Constants

4-25

4.4.3 Assembly Time Constants
The EQU directive can be used to assign a value to a symbol.
The symbol then becomes a constant for the duration of the
assembly. The value does not have to be absolute to be used in
expressions. If the expression contains forward references then
the symbol takes the value of the expression at the end of the
first pass.

Example

68000

val equ 3
movi #val, a0

SH2

val equ 3
move #val,r0

Source Code Syntax

4-26

4.4.4 Current Location Counter
During assembly, the assembler keeps a variable that always
contains the start address of the current line. This variable is
known as the Location Counter and is represented by an asterisk
(‘*’).

Example 1

MyString dc.b 'Hello World'
MyStringLenequ *-MyString

The @ operator is similar to the ‘*’ operator except that where
‘*’ is the program counter at the start of the statement, @ is
advanced during the line. It can be used only with DC and DCB
directives, usually in expressions to determine the value of the
current address.

Example 2

dc.l @,@,@
; The three longs will be 4 bytes apart

dc.w Fred-@,Start-@
; The offsets are from the current word

Example 3

The location counter can express the idea that *=address of
myself. The location counter contains the value $8000 and the
instruction will be translated into a relative jump to address
$8000 from address $8000 i.e. jump to myself. This is useful
when waiting for an interrupt but be careful you do not end up
in an infinite loop.

org $8000
 jmp *

Constants

4-27

4.4.5 Pre-defined Constants
There are a number of constants that are pre-defined and
updated by the assembler. Some of these are standard internal
constants and the rest are mainly to help you keep track of
version numbers and dates. Note that pre-defined constants are
case insensitive so you can, for example, use either or both of
_radix and _RADIX.

Renaming Pre-defined Constants

See also
“ALIAS” on

page 5-3.

Unlike many other assemblers you are free to re-define any
symbol already encountered by the assembler, including
assembler instructions and register names. Note that because
pre-defined constants are case insensitive you must alias both
the upper and lower case name before you can define a symbol
with the same name aa a pre-defined constant. For example,
you must alias both _RADIX and _radix before you can define
your own symbol using one of these names.

Constant Description

* Current value of the assembly program
counter, evaluated at the beginning of
the statement.

@ Current value of the assembly program
counter, evaluated during the
statement.

__rs Current value of the RS counter i.e. the
current offset into a structure. Note that
this name begins with a double
underscore.

_radix Current value of RADIX directive.

_rcount Current iteration count, starting at 1, in
a repetitive statement.

_year The year at the start of assembly.

Table 4-1. Pre-defined constants

Source Code Syntax

4-28

_month The month at the start of assembly.

_day The day at the start of assembly

_weekday The weekday at the start of assembly.

_hours The hour at the start of assembly.

_minutes The minute at the start of assembly.

_seconds The second at the start of assembly

_filename The name of the root file (the first
source file name).

_current_file The file being assembled.

_current_line The current line number within the
current file.

_section_name The name of the current section.

_group_name The name of the current group.

_snversion The version of the assembler.

narg
The number of parameters passed to
the current macro.

_litflags A bit field which can be used to
determine if there are any pending
literals to be output. If bit value four is
set there are word literals to be output;
if bit value 16 is set there are long
values to be output; all other bits are
always zero.

Constant Description

Table 4-1. Pre-defined constants

Note The 24 hour time and date constants are set at the beginning
of the assembly and do not change. To put the date and time
into a string see “Turning Numbers into Strings” on page
4-31.

Constants

4-29

Example

AsmDay dc.w _day
AsmMonth dc.w _month
AsmYear dc.w _year

Source Code Syntax

4-30

4.4.6 Strings
See also

“Macro
Parameters

” on page
6-5.

A character string is a list of characters enclosed in singe or
double quotes (' ' or " "). Strings may be used only in DC.B,
EQUS and INFORM statements, as arguments to string
functions or as macro parameters.

Quotes are used only to identify the string to the assembler and
do not form part of the string itself. To put a single quote in a
string the quote should appear twice or the whole string
delimited with double quotes. Similarly, to put a double quote
in the string the quote should appear twice or the whole string
delimited by single quotes.

Example

dc.b "a double quoted 'string'"
dc.b 'a single quoted "string"'

Constants

4-31

4.4.7 Turning Numbers into Strings
The \# and \$ parameters can be used to substitute the decimal
and hexadecimal value respectively of a symbol into your
source code. They are used to turn numbers into strings for
formatting data or building arrays of symbols and so on.

Source Code Syntax

4-32

Example 1

Col0 equ $FFF
Col1 equ $F0F
Col63 equ $0FF
Col99 equ $FF0

Index = 0
dc.w Col\#Index ;expands to Col0

Index = 1
dc.w Col\#Index ;expands to Col1

Index = 99
dc.w Col\#Index ;expands to

Col99
dc.w Col\$Index ;expands to

Col63

;The words DC'd will be $FFF,$F0F,$FF0 and $0FF.

Example 2

; Put the data and time into a string
AsmDate dc.b '\#_day/\#_month/\#_year'
; expands to
AsmDate dc.b '1/4/1993'

Expressions

4-33

4.5 Expressions
An expression is a sequence of one or more constants, symbols
or functions separated by operators. White space (spaces or
tabs) is allowed in expressions after mathematical operators
regardless of the White Space option (ws+|-). The comparison
operators =, >=, etc. return -1 if the comparison is True and 0 if
the comparison is False. If a string equate or macro parameter is
used in an expression there is no need to precede it with a
backslash.

Example

MinusOne equ $FFFFFFFF ;negative
NotMinusOne equ $FFFFFF ;positive

Note Care should be taken when using large numbers in
expressions. The assembler uses a 32-bit expression
evaluator so bit 31 must be set to negative as well as bit 23.

Source Code Syntax

4-34

4.5.1 Operator Precedence
The operators supported by the assembler are given in Table 4-1
on page 4-35 below. They are listed in decreasing order of
precedence; operators of equal precedence are grouped together
and evaluated from left to right in that group. The precedence
can be overridden by the use of parentheses as these have the
highest precedence. To increase the clarity of complex
expressions it is recommended that they be appropriately
parenthesised.

Expressions

4-35

.

* The 68000 Quirk Logical OR (or+) allows the use of ‘!’ as a
synonym for ‘|’.

Operator Type Usage Description

() Primary (a) Parenthesis brackets

+
-
~
!

Unary
Unary
Unary
Unary

+a

-a

~a

!a

Positive a
Negative a
Bitwise NOT
Logical NOT

<<
>>

Binary
Binary

a<<b

a>>b

Shift a left b times
Shift a right b times

&
| (or !)*
^

Binary
Binary
Binary

a&b

a|b

a^b

Logical AND
Logical OR
Logical XOR

*
/
%

Binary
Binary
Binary

a*b

a/b

a%b

Multiply a by b
Divide a by b giving
quotient
Divide a by b giving
modulus

+
-

Binary
Binary

a+b

a-b

Increment a by b
Decrement a by b

=
<
>
<=
>=
<>

Binary
Binary
Binary
Binary
Binary
Binary

a=b

a<b

a>b

a<=b

a>=b

a<>b

Equate b to a
a is less than b

a is greater than b

a is less than or equal
to b
a is greater than or
equal to b
a is unequal to b

Table 4-1. Operator precedence

Source Code Syntax

4-36

4.5.2 Functions
The assembler provides a set of functions providing useful
information about symbols, strings, section and group sizes and
start addresses, offsets and others.

68000

ADDRMODE

addrmode(InstructionOperand)

The ADDRMODE function allows a macro to determine the
addressing mode that an instruction will use allowing the
additional structured assembly macros to be implemented.The
addressing modes used by ADDRMODE are as follows:

Mode Description Example

0 Data register addrmode(d3)

2 Address register addrmode(sp)

4 Indirect addrmode((a3))

6 Indirect post incrementaddrmode((sp)+)

8 Indirect pre-decrementaddrmode(-(a0))

10 Displacement addrmode(10(a0))

12 Displacement with
index

addrmode(2(a0,d0.w))

14 Absolute word addrmode(fred\w)

16 Absolute long addrmode((fred+2).l)

18 Displacement off PC addrmode(lab(pc))

20 Displacement off PC
with index

addrmode(10(pc,d0.l))

22 Immediate addrmode(#fred+4)

Table 4-1. Addressing modes used by ADDRMODE.

Expressions

4-37

ALIGNMENT

alignment(x)

The ALIGNMENT function returns the offset of its argument
from the section’s alignment type. The alignment type can be
any power of 2 where :

20 means Byte aligned
21 means Word aligned
22 means Long aligned
23 means Double Long aligned
... etc.

In a byte aligned section ALIGNMENT(X) will always return
0, in a word aligned section it will return 0 or 1, and in a long
word aligned section 0..3.

Example

if alignment(*)&1 ;If PC is odd pad
with

 dc.b 0 ;zero to even
boundary

endif

DEF

def (Symbol)

The DEF function checks to see if Symbol has been previously
encountered either as a definition or a reference. DEF returns -1
if Symbol has been previously defined, 0 otherwise.

FILESIZE

filesize ([~]Filename)

The FILESIZE function returns the size of Filename or -1 if
Filename does not exist. If the filename does not specify a path

Source Code Syntax

4-38

or ‘~’, by default the assembler first looks for files in the current
directory. If it cannot be found there the assembler looks in the
directories built up using the ‘j’ switch. If the ~ is specified the
assembler will search for files only in the directory in which the
assembler executable is located.

Example

Size = filesize(main.68k)
if (size=-1)

inform 3, "File not found"
endif

OBJBASE

objbase(Name)

See also
“Group

Functions”
on page

7-20.

The OBJBASE function returns the logical starting address of
the section or group specified by Name, evaluated at link time.

ORGBASE

orgbase(Name)

See also
“Group

Functions”
on page

7-20.

The ORGBASE function returns the physical starting address of
the section or group specified by Name, evaluated at link time.

OBJLIMIT

objlimit(Name)

The OBJLIMIT function returns the last logical address containing
data from the section or group specified by Name.

ORGLIMIT

orglimit(Name)

The ORGLIMIT function returns the last physical address
containing data from the section or group specified by Name.

Expressions

4-39

SIZE

size(Name)

The SIZE function returns the current size of the section or
group Name. It is evaluated immediately and so reflects the
current section or group size not the final size.

Source Code Syntax

4-40

LINKEDSIZE

linkedsize(Name)

The LINKEDSIZE function returns the final link time size of the
section or group specied by Name.

INSTR

instr([Expr,]String,SubString)

The INSTR function performs a case sensitive search on the
string String and returns the starting position of the sub-string
SubString. The position in the string to start searching for the
sub-string can be optionally specified with the expression Expr.

INSTRI

instri([Expr],String,SubString)

The INSTRI function performs a case insensitive search on the
string String and returns the starting position of the sub-string
SubString. The position in the string to start searching for the
sub-string can be optionally specified with the expression Expr.

NARG

See also
"Extended

Parameters
" on page

6-17.

narg(List)

The NARG function returns the number of items in a parameter
list, List.

OFFSET

offset(Expr)

The OFFSET function returns the offset of its parameter from
the base of the section in which it is defined. It is not evaluated
until link time so if you require the offset into the current
modules contribution to a section you will need to place a label

Expressions

4-41

at the start of the section and do the subtract yourself. Use
OFFSET(*) to get the offset of the current PC.

REF

ref(Symbol)

The REF function checks to see if the symbol Symbol has been
referenced but not defined. REF returns -1 if Symbol has been
referenced but not defined, 0 otherwise.

SQRT

sqrt(Expr)

The SQRT function returns the truncated integer square root of
an expression Expr. Expr must evaluate to an integer; all
negative arguments return -1.

STRCMP

strcmp(String1,String2)

The STRCMP function performs a case sensitive comparison of
two strings String1 and String2. STRCMP returns -1 if the
comparrison is true, 0 otherwise.

STRICMP

stricmp(String1,String2)

The STRICMP function performs a case insensitive comparison
of two strings String1 and String2. STRICMP returns -1 if the
comparrison is true, 0 otherwise.

STRLEN

strlen(String)

The STRLEN function returns the length of the string String.

Source Code Syntax

4-42

68000

TYPE

type(Symbol)

The TYPE function returns the type of a symbol. If the
argument isn’t the name of a previously encountered symbol it
returns 0, not an error. The TYPE function is useful in macros
where you can use it to determine what has been passed to the
macro as a parameter. TYPE returns a word with the bits having
the meanings described in the table below. To check specific
bits returned by the TYPE function use the bitwise ‘and’
operator ‘&’ as in the example following the table.

Bit Description

0 Symbol has an absolute value.

1 Symbol is relative to start of a section.

2 Symbol as defined using the SET directive.

3 Symbol is a macro.

4 Symbol is a string equate.

5 Symbol was defined using the EQU directive.

6 Symbol was specified in an IMPORT statement.

7 Symbol was specified in an EXPORT statement.

8 Symbol is a function.

9 Symbol is a group name

10 Symbol is a macro parameter.

11 Symbol is a short macro.

12 Symbol is a section name

13 Symbol is absolute word addressable

14 Symbol is a register equate.

15 Symbol is a register list equate.

Table 4-1. Symbol types.

Expressions

4-43

Example

; Check bit 9
if (type(\1)&$200)=0
 inform 3,'%s is not a group

name','\1'
endif

Source Code Syntax

4-44

This is the only information this page contains.

Overview

5-1

5 Assembler Directives

5.1 Overview
The assembler supports an extensive range of pseudo-
mnemonics called Directives. These supply program data and
control the assembly process. In particular they allow you to:

• Define symbolic names for constants and
variables

• Define initialised data
• Reserve memory blocks for uninitialised data
• Control listings output
• Include other files
• Assemble conditional blocks.
• Assemble code into specified sections.
• Generate Errors and Warnings

The first part of this chapter describes the directives according
to function and the second part, the Directives Reference, is an
alphabetical reference of the directives, including syntax
information.

Assembler Directives

5-2

About This Chapter

The topics covered in this chapter are:

• Changing Directive Names
• Equates
• Defining Data
• Changing The Program Counter
• Listings
• Including Other Files
• Setting Target Parameters
• Conditional Assembly
• String Handling
• Local Labels and Modules
• Sections and Groups
• Options
• User Generated Errors and Warnings

Changing Directive Names

5-3

5.2 Changing Directive Names

5.2.1 ALIAS
See also
“DISABLE”
on page
5-3.

Use the ALIAS directive to rename the assembler’s directives,
pre-defined functions and constants. This is useful if any of the
pre-defined constants or functions clash with your own or you
are used to a different name. ALIAS can be used on any name
already encountered by the assembler, including assembler
instructions. ALIAS will define a new symbol to be used as an
alias for an existing name but will not remove the current name
from the symbol table. The new name is defined to be
equivalent to the old name and may be used anywhere that the
old name was valid. ALIAS is usually used in conjunction with
the DISABLE directive to rename the pre-defined assembler
symbols.

Syntax

NewName alias OldName

where

NewName is a symbol defined by this statement.

OldName is any symbol previously encountered by the
assembler.

Example

_type alias type
disable type

5.2.2 DISABLE
See also
“ALIAS” on
page 5-3.

Use the DISABLE directive to remove a name from the symbol
table, provided it has already been encountered by the
assembler. DISABLE can be used in conjunction with ALIAS
to rename something rather than just providing an alias; care
should be taken to alias the name before disabling it if that
functionality is needed later.

Assembler Directives

5-4

Syntax

disable OldName

where:

OldName is any symbol previously encountered by the
assembler including assembler directives and
instruction op codes. OldName is effectively
un-defined and becomes free to be re-used.

Example

root alias sqrt
disable sqrt
dc.w root(66)

Equates

5-5

5.3 Equates
Equates are used to assign a symbolic name to a value (a
variable numeric value, constant, string, register name or
register list). The symbol can then be used in place of a value in
the assembly source code. Equates enable you to assign
meaningful names to constants and numeric variables which
improves code readability and eases changes to the value of a
constant. The assembler supports six types of equates;, which
are described below.

Note that expressions in a SET directive must evaluate
immediately whilst expressions in other types of equates must
evaluate at the end of assembly.

5.3.1 EQU (.EQU)
The EQU directive is used to assign a symbolic name to a
constant or the value of an expression. The symbol to the left of
EQU is assigned the result of the expression on the right.

Syntax

Symbol equ Expression

Symbol .equ Expression

where:

Symbol is a symbol defined by this statement.

Expression is a numeric expression whose value will be
assigned to the given label for the duration of
the assembly.

The .EQU extension is provided via the standard include file
SNASMSH2.MAC and can be changed by editing that file.

Once a symbol has been assigned a value with EQU, any
attempt to assign a new value to the same symbol will result in
an error. However, assigning a symbol the same value is
allowed (known as a benign redefinition) and usually occurs

Assembler Directives

5-6

when an include file defines hardware locations for itself that
are also used by the main program.

Example

True equ 1
IOPort equ $300
Entries equ 8
EntryLength equ 16
+TotalSize equ Entries*EntryLength

5.3.2 SET (.ASSIGN)
See “Labels
and
Symbols”
on page 4-
17 See
“Sections
and
Groups” on
page 7-1

The SET directive is used to assign a symbolic name to a
variable. The symbol to the left of SET is assigned the result of
the expression on the right. Unlike the EQU directive, a symbol
defined with SET can have its value changed as and when
required. As such, these variables are often used for loop
counters and scratch variables in macros. The SET directive
may also be written as ‘=’.

Unlike EQU, the expression must not reference any undefined
or external symbols. Additionally, the symbol does not inherit
any information about the type of the expression. This means
that variables defined in this way are not always the best choice
in source code using sections.

Note The SNASM assemblers, unlike most assemblers, allow the
use of forward references in the expression to which the
symbol will be equated. At assembly time, as much as
possible of the expression is evaluated; the remainder is
completed at the end of the first pass or deferred until link
time.

Equates

5-7

Syntax

Label set Expression

Label .assign Expression

where:

Label is a re-definable symbol defined by this
statement.

Expression is a value that will be assigned to the given
label until re-defined by another SET
directive. The expression must not reference
any external or undefined symbols and should
not contain any forward references.

The .ASSIGN extension is provided via the standard include
file SNASMSH2.MAC and can be changed by editing that file.

Example

FreeSpace SET 0
;zero total free space

...
FreeSpace = FreeSpace+1024
;1024 bytes more free here

5.3.3 EQUS
String equates are used to define synonyms for string variables.
The EQUS directive is used to assign a symbolic name to a
string variable such as a copyright message or a scratch variable
in macros.

The text to be assigned to the string variable is delimited by
single or double quotes (' ' or " "). These quotes are used only
to identify the string to the assembler and do not form part of
the string itself. If there are no quotes the assembler assumes
that the parameter is the name of a previously defined string
equate. To put a single quote in a string the quote should appear
twice or the whole string delimited with double quotes. To put a

Assembler Directives

5-8

double quote in the string the quote should again appear twice
or the whole string delimited by single quotes.

Symbols equated with the EQUS directive can be used
anywhere in your code so to inform the assembler that it is
about to encounter a string equate they must, in general, be
preceded by a backslash (‘\’) . If there could be confusion as to
where the parameter ends, use a second backslash. There are
two related situations in which the requirement for a preceeding
backslash is relaxed, these relate to expressions and addressing
modes. In expressions the string is automatically substituted for
the string variable when the expression is evaluated. If the
symbol cannot be found the assembler will not perform any
string substitution and the string substitute construct, ‘\Version’
for example, will be left in the source and may produce an error
message. Also, if a string variable is at the start of an address
mode in a string equate, it will be substituted for without the
need for a backslash.

Equates

5-9

Syntax

Symbol equs { String | EqusName | ParameterList}

where:

Symbol is the symbol defined by this statement.

String is a string enclosed in quotes.

EqusName is any previously defined string equate.

ParameterList is a list of parameters (expressions or strings)
separated by commas to be passed to a macro.

Example 1

single1 equs 'I''m ok you''re ok'
single2 equs "I'm ok you're ok"
double1 equs 'They said "ok" and left'
double2 equs "They said ""ok"" and left"

Example 2

Version equs 'Demo version 2.0a 01/04/93'
...
dc.b '\Version'

; Expands to
; dc.b 'Demo version 0.2a 01/04/93

Example 3

V1 equs offset(a0)
...
move.l V1,d1
move.l d1,V1

Assembler Directives

5-10

5.3.4 RS Equates
RS equates are used primarily for global variables and data
structures. They enable lists of constant labels to be defined
without using explicit numbers that would require changing if
an item was added or deleted near the front of a list. So, in a
data structure a set of labels can be defined as offsets without
having to explicitly keep track of the offsets. The RS,
RSRESET, RSSET directives and the __RS internal variable
provide this facility.

The RS directive is used to define a label as an offset. If RS is
used with no size modifier then it is equivalent to RS.W. The
RSSET directive is used to set the RS counter to a particular
value. This is useful when starting an offset at a value other than
zero. The RSRESET directive is used to set the RS counter to
zero at the start of each new structure. It can take an optional
parameter which if present causes it to behave exactly like the
RSSET directive. This is for compatibility only and its use is
discouraged.

The assembler has an internal variable called __RS (note the
double underscore) which is used to keep track of the current
offset. When a symbol is defined with the RS directive, the
value of __RS is assigned to the symbol and the counter
advanced by the specified number of bytes, words or long
words.

If the automatic even option is enabled then RS.W and RS.L set
the __RS variable to the next even boundary before the
operation is performed.

Equates

5-11

Syntax

rsset Count
rsreset [Count]

Label rs [.Qualifier] Count

where:

Label is a symbol defined by this label.

Qualifier is an optional qualifier that can be:

.b Byte data

.w Word data

.l Longword data

The RS directive operates as RS.W if no
qualifier is specified.

Count is an expression that must evaluate to a value.

Assembler Directives

5-12

Example 1

rsreset
FileHandle rs.w 1 ; __RS=0
FileOpen rs.b 1 ; __RS=2
FileName rs.b 8+3 ; __RS=3
FilePos rs.l 1 ; __RS=14
FileSpecSize rs.b 0 ; =18 __RS is not

; advanced here.
;Could have used
;FileSpecSize equ __RS

Example 2

In this example the RSSET operand is negative as the address
register points 8 bytes into the data structure. RSRESET -8
could have been used but this is for compatibility only and its
use is discouraged.

rsset -8
ObjXPos rs.l 1
ObjYpos rs.l 1
ObjFlags rs.w 1
ObjSpeed rs.w 1

68000

Example 3

This example uses a data structure consisting of a long word, a
byte and another long word in that order. To make the code
more readable and easier to update should the structure change,
use lines such as

rsreset
Next rs.l 1
Flag rs.b 1
Where rs.l 1

and access the code with lines like

move.l next(a0),a1
move.l where(a0),a2
tst.b flag(a0)

Equates

5-13

SH2

Example 3

rsreset
Next rs.l 1
Flag rs.b 1
Where rs.l 1

and access the code with lines like

move.l next(r4),r1
move.l where(r4),r2
tst.b flag(r4),r0
cmp/eq r0,r0

5.3.5 Register Equates
Register equates are used to define synonyms for registers to
improve code readability. The assembler supports two
directives for register equates; EQUR (.REG) and REG.

EQUR (.REG)

The EQUR directive is used to define a symbolic name (that
may include periods) for a data or address register.

Syntax

Symbol equr Register

Symbol .reg Register

where:

Symbol is any symbol defined by this statement.

Register is any data or address register.

The .REG extension is provided via the standard include file
SNASMSH2.MAC and can be changed by editing that file.

Assembler Directives

5-14

68000

Example 1

section Code

City equr a0
Street equr a1
Dude equr a2

...
From equr d0
To equr d1
Counter equr d2
Player equr d4

SH2

Example 1

section Code

City equr r0
Street equr r1
Dude equr r2

...
From equr r0
To equr r1
Counter equr r2
Player equr r4

68000

Example 2

move.w d0,Offs(a3,d2.w)
; Could be written as
Power equr d0
CarDataPtr equr a3
CurIndex equr d2

...
move.w

Power,Offs(CarDataPtr,CurIndex.w)

SH2

Example 2

mov.w r0,Offs(r2)
; Could be written as
Power equr r0
CarDataPtr equr r2

...
mov.w Power,Offs(CarDataPtr)

Equates

5-15

68000

REG

Tthe REG directive is similar to EQUR but used to define a
synonym for a list of data or address registers. A range of
registers can be specified by separating names with a ‘-’
character.

Syntax

Symbol reg RegisterList

where:

Symbol is a symbol defined by this statement.

RegisterList is a list of register names or symbols.
Different types of register are separated by a
forward slash
(‘/’). A range of registers can be specified by
separating names with a dash (‘-’). The
register at the start of the range must be less
than the register at the end of the range.

68000

Example 1

SaveRegs reg d0-d7/a0/a2-a4/a6

68000

Example 2

movem.l d0-d6/a0-a6,-(sp)
;Could be written as
MainRegs reg d0-d6/a0-a6

movem.l MainRegs,-(sp)

Assembler Directives

5-16

5.4 Defining Data
The assembler provides a variety of ways to define initialised
and uninitialised data. The DC directive is used to define
constants in memory. The DCB directive is used to generate a
block of memory containing a specified number of the same
value. The HEX directive is similar to DC but is used to store
hexadecimal data in memory. The DATA and DATASIZE
directives are used to define constants larger than the maximum
32 bits. These directives are now described in more detail.
Uninitialised data is defined using the DS directive.

5.4.1 DC
The DC directive takes a variable number of arguments and
after evaluating them places the results in the object code in
either byte, word or long format. Unless the truncate option is
enabled (t+), the assembler will generate an error if the value of
the expression cannot fit in the data size declared. If the
automatic even option is enabled, constants are aligned on word
boundaries for DC.W and DC.L before the operation is
performed.

DC directives can have spaces after commas but not before,
even if the white space option is disabled (i.e. a space or tab
introduces a comment). To put a single quote in a string either
double up the single quote or delimit the string with double
quotes (" and "). To put a double quote in the string double it up
again or delimit the string with single quotes. Remember that
strings can be used only with the byte form of the DC directive.

Defining Data

5-17

Syntax

[Label] dc [.Qualifier] Operand [,Operand]...

where:

Label is an optional symbol defined by this
statement.

Qualifier is an optional qualifier that can be:

.b Byte data

.w Word data

.l Longword data

The DC directive operates as DC.W if no
qualifier is specified.

Operand is the operand may be a quoted string or an
arithmetic expression. The quoted string must
not exceed the size declared in the DC except
for DC.B where it can be any length, each
byte being emitted separately. Expression
evaluation is done in 32 bit arithmetic for all
types. Unless the truncate option is enabled
(t+), the assembler will generate an error if
the expression value cannot fit in the data size
declared.

Example 1

dc.b "Any size string"
dc.w "ab",$afff
dc.l $76543210,"abcd"

Example 2

Position dc.w -69,202
LineLength dc.w 0
PointerAddr dc.l StringBuffer
Signature dc.l 'APPL'
ExelD dc.w 'ZM'
ErrorNum dc.w -1
ErrorStr dc.b 'Maximum length exceeded ',0
Dispatch dc.l Routine1,Routine2,Routine3

Assembler Directives

5-18

5.4.2 DCB
The DCB directive defines a constant block of memory. DCB
takes two parameters, Count and Value; Count specifies how
many times Value is to be repeated. Count must always be
present and evaluate but Value is optional; if Value is not
specified then the default value of zero is used. If Count is
followed by a comma but no Value, the assembler will generate
an error. Unless the truncate option is enabled (t+), the
assembler will generate an error if the value of the expression
cannot fit in the data size declared. If the automatic even option
is enabled (ae+), constants are aligned on word boundaries for
DCB.W and DCB.L before the operation is performed.

Defining Data

5-19

Syntax

[Label] dcb [.Qualifier] Count, Value

where:

Label is any symbol defined by this statement.

Qualifier is an optional qualifier that can be:

.b Byte data

.w Word data

.l Longword data

The DCB directive operates as DCB.W if no
qualifier is specified.

Count specifies how many times Value should be
repeated. Count must evaluate.

Value is the value to be placed in memory.

Example

dcb.b 100,63 ;100 bytes containing 63
dcb.w 256,7 ;256 words containing 7

Out of range parameters

See also
“Options
and 68000
Optimisatio
ns” on page
5-62.

Out of range parameters normally generate an error. This is
different from many other assemblers that truncate out of range
parameters to force them into range. The assembler truncates
parameters for DC, DCB, DZ and DW only if the truncate
option is enabled (t+).

Assembler Directives

5-20

Example

The following examples will generate error if the truncate
option is not enabled (the default).

dc.w 70000 ; Greater than 65535
dc.w -40000 ; Less than -32768
dc.w 260 ; Greater the 256
dc.w -130 ; Less than -128
dcb.w 10,70000 ; Greater than 65535
dcb.w 128,-40000 ; Less than -32768
dcb.b 16,260 ; Greater than 256
dcb.b 16,-130 ; Less than -128

5.4.3 HEX
The HEX directive is similar to DC but is used to store
hexadecimal data in memory. HEX takes as its parameter a
string containing an even number of hexadecimal digits, paired
up to give bytes. White space is allowed in the string at byte
boundaries, providing that the white space option (ws+) has
been set.

See also
“INCBIN”
on page
5-37.

Do not use the HEX directive for large amounts of data as it is a
less efficient storage method than binary files. It is also slower
to read and assemble and is not very readable. A more efficient
method is to store the data as bytes in a file and use the INCBIN
directive to include the data.

Syntax

hex HexString

where:

HexString is a list of hexadecimal nibbles which are
paired to give bytes. Enabling the white space
option (ws+) allows you to insert spaces in the
hexadecimal string at byte boundary
positions.

Defining Data

5-21

Example

MaskTab1 dc.b
$01,$02,$04,$08,$10,$20,$40,$80
; could be written as
MaskTab1 hex 0102040810204080
; or

opt ws+
MaskTab2 hex 01 02 04 08 10 20 40 80

5.4.4 DATASIZE
See
“DATA” on
page 5-22

DATASIZE is used in conjection with the DATA directive to
define constants greater than the 32-bit limit allowed by the DC
directive. DATASIZE specifies the size of constants
subsequently defined with the DATA directive. For example,
using DATASIZE with 4 bytes gives 32-bit constants, with 8
bytes gives 64-bit constants and so on, with the maximum size
of a constant being 32 bytes (256 bits). Note that DATASIZE
takes only constants as parameters, the maximum number of
which is limited only by the line length.

Syntax

datasize Size

where:

Size is a value specifying the number of bytes to be
used for constants defined using the DATA
directive. This value is decimal by default but
can be hexadecimal if preceded by ‘$’ or ‘0x’
or binary if preceded by a ‘%’ symbol. The
alternate numeric form cannot be used.

Example

datasize 6 ;6 byte (48-bit) numbers
...

Assembler Directives

5-22

5.4.5 DATA
See
“DATASIZE
” on page 5-
21

The DATA directive takes a variable number of parameters and
defines them as constants. Parameters are decimal by default
but can be hexadecimal if preceded by ‘$’ or ‘0x’, binary if
preceded by a ‘%’ or in any other radix from 2-9 using the
‘ r_nnn’ form of integer constants; the alternate numeric option
cannot be used. Note that DATASIZE takes only constants as
parameters, the maximum number of which is limited only by
the line length.

Syntax

data Value [,Value]...

where:

Value is the value of the constant. This value is
decimal by default but can be in hexadecimal
if preceded by a $ symbol. Binary numbers
and the alternate numeric form cannot be
used. No symbols or operators are allowed.

Defining Data

5-23

Example

datasize 8 ; 64 bit numbers
data 10000,1000000
data $100,-200
data %11001100
data 8_100

5.4.6 IEEE32 and IEEE64
The IEEE32 and IEEE64 directives define 32-bit and 64-bit
IEEE floating point numbers respectively.

Syntax

ieee32 Constant
ieee64 Constant

where:

Constant is any valid floating point constant defined by
this statement.

Example

ieee32 1.234,3.14159,23e11
ieee64 1.23e40,-0.004

Assembler Directives

5-24

5.4.7 DS
The DS directive is used to reserve a block of memory and, with
the exception of uninitialised data sections, initialise the
contents to zero. The label is normally be set to the start of the
area defined. However, if the automatic even option is enabled
(ae+) DS.W and DS.L will be set to the beginning of the next
word boundary.

Syntax

[Label] ds [.Qualifier] Count

where:

Label is an optional label defined by this statement.

Qualifier is an optional qualifier that can be:

.b Byte data

.w Word data

.l Longword data

The DS directive operates as DS.W if no
qualifier is specified.

Count is an expression that evaluates to the number
of bytes, words or long words to be reserved.
Count must evaluate.

Example

The following examples all reserve space for 1000 bytes.

ScratchBuffer ds.b 1000
ScratchBuffer ds.w 500
ScratchBuffer ds.l 250

.

Note The DS directive is used to reserve space in BSS sections,
the cumulative count being used to set the size of the BSS
segment. As with everything else in BSS sections, no
initialisation is performed so do not assume that the memory
contents have been set to zero.

Changing The Program Counter

5-25

5.5 Changing The Program Counter

5.5.1 ORG
The ORG directive specifies the starting address from which
object code will be generated in the target memory. The address
can be an expression which must evaluate and not reference
external or undefined symbols; an error will be generated if
ORG is used with no address specified. You can use the ORG
directive in Sections and if you are producing linkable output
provided you only increase the program counter.

If you are assembling to a target with a supporting operating
system you can use ORG at the beginning of a section or
program to specify the amount of RAM required. This is useful
when developing for a machine with the operating system
present. The parameter starts with a ‘?’ character followed by
the amount of RAM required. The target then returns the
address at which it reserved the RAM and the program is
assembled to run at that address. This form of the ORG
directive has an optional second parameter which indicates the
type of memory to be allocated. The value of this parameter is
specific to the version of the target software being used.

Syntax

org Address

where:

Address An expression specifying the program starting
address in the target memory. The expression
must evaluate.

68000

Example 1

org $400
Start1 lea MyStack,sp

...

Assembler Directives

5-26

SH2

Example 1

org $400
Start1

mov #MyStack,sp
...

68000

Example 2

org ?512*1024 ;ask for
512K

lea VarBase(pc),a6
...

SH2

Example 2

org ?512*1024 ;ask for
512K

mova @VarBase,PC),r0
...

Example 3

ROMVec group org($00000000)
ROMGraphics group org($00001180)
ROMCode group
ROMData group
ProtRAMData group org($FFFF0000),bss
SlowRAMData group org($FFFF0180),bss
FastRAMData group org($FFFFFB80),word,bss

org $00000000

5.5.2 EVEN
See also
“CNOP” on
page 5-28.

The EVEN directive forces the program counter to the next
even (word-aligned) address. This is useful for ensuring buffers
and strings are word aligned. When using sections it is not
possible to align the program counter to a larger boundary than
the alignment of the current section. For example, EVEN
cannot be used in a byte aligned section (unless it is ORG’d to a
known address); the section has to be at least word-aligned.

Changing The Program Counter

5-27

Syntax

even

Example 1

The EVEN directive is equivalent to:

cnop 0,2

Example 2

Prompt dc.b ‘Hit a key when ready’,0
even

; Put buffer on word boundary
Buffer ds.b 1024

5.5.3 .ALIGN

SH2

The .ALIGN directive aligns the PC to the specified boundary,
filling any intervening space with NOOP instructions.

Syntax

.align Boundary

where:

Boundary specifies the boundary as word, long or
double long where Boundary can be one of:

2 Word boundary
4 Long boundary
8 Double Long boundary

Example

The .ALIGN directive is equivalent to:

cnop 0, Boundary,$00090009

Assembler Directives

5-28

5.5.4 CNOP
The CNOP directive sets the program counter to a given offset
from a specified boundary. The offset will be from the next
address that is a multiple of the boundary.

See also
“Sections
and
Groups” on
page 7-1.

When using sections it is not possible to align the program
counter to a larger boundary than the alignment of the current
section unless the section has a base address set e.g. CNOP
cannot be used to align the program counter to 4 bytes in a word
(2 byte) aligned section. The assembler will generate a warning
if this is attempted.

Syntax

cnop Offset, Boundary[, Pad]

where:

Offset specifies the offset in bytes. Offset is an
expression that must evaluate i.e. not
reference any external or undefined symbols.

Boundary specifies the boundary in bytes from which
the offset is added. Boundary is an expression
that must evaluate i.e. not reference any
external or undefined symbols.

Pad specifies the value to fill memory locations
with between the address given by the current
value of the program counter and the address
resulting from the CNOP. Pad is an
expression that must evaluate i.e. not
reference any external or undefined symbols.

If the adjustment to the PC is greater than four
bytes then Pad is treated as a 32-bit value. The
ajustment may not fit exactly into a 32-bit
multiple. If the remaining adjustment is
greater than two bytes, the value of Pad is
AND’ed with $FFFF. If the remianing
adjustment is a single byte, the least
significant byte of Pad is used.

Changing The Program Counter

5-29

Example 1

cnop 0,2
;same as EVEN directive

cnop 0,4
;next long word boundary

cnop 64,128
;64 bytes above next 128 byte boundary

Example 2

PopName: dc.b 'keyhandler',0
cnop 0,4

5.5.5 OBJ and OBJEND
The OBJ and OBJEND directives are used to implement
assembly with offset. The OBJ directive specifes the offset
address and OBJEND terminates the prevous OBJ. The code
between OBJ and OBJEND is assembled as if it was at the
address specified by OBJ.

OBJ and OBJEND cannot be nested and must always be
correctly balanced. Nested or unbalanced OBJ and OBJEND
constructs will cause the assembler to loose track of where the
PC is pointing.

Syntax

obj Offset
...
objend

where:

Offset specifies the offset in bytes. Offset is an
expression that must evaluate i.e. not
reference any external or undefined symbols.

Assembler Directives

5-30

68000

Example

org $8000
RunAddr equ $400

lea RelocCode,a0
lea RunAddr,a1
move.w #(RelocEnd-RelocCode)/2-1,d0

@Loop move.w (a0)+,(a1)+
dbrad 0,@Loop
jmp RunAddr

RelocCode
obj RunAddr

; The following code, up to but not including
; the OBJEND directive, will be set to run at
RunAddr

jmp Startup
...

Startup move.w #$2700,sr
...
objend

RelocEnd

Changing The Program Counter

5-31

SH2

Example

org $8000
RunAddr equ $400

mov #RelocCode,r0
mov #RunAddr,r1
move.w #(RelocEnd-RelocCode)/2-

1,r2
@Loop

move.w (r0)+,r3
move.w r3,(r1)
add #2,r1
dt r2
bf @Loop
bra RunAddr
nop

RelocCode
obj RunAddr

; The following code, up to but not including
; the OBJEND directive, will be set to run at
RunAddr

jmp Startup
...

Startup

; Disable divide unit overflows
mov #div_base,r0
mov #0,r1 ;ovfie=0,ovf=0
mov.l r1,@(div_cont,r0)
...
objend

RelocEnd

Assembler Directives

5-32

5.6 Listings
The assembler will generate a program listing during the first
pass if you specify a listing file on the command-line or set the
SNASM environment variable to produce one by default.

The assembler normally turns off listing generation whenever it
is expanding a macro so if you wish to see your macro
expansions you need to set the list macros option (m+).
Additionally, you can set the show macro malls (mc+) option to
show each macro invocation in the listing file, including nested
macros and the nesting level. Also, code that would be ignored
due to conditional assembly is placed in the listing only if the
list failed (lf+) option is set.

5.6.1 LIST and NOLIST
As listings are usually used to check how macros are expanded
you will not normally want a listing of your entire program. The
LIST and NOLIST directives enable you to control which parts
of your program are listed. The simplest form of control
involves using the NOLIST directive to turn listing off and turn
it back on with the LIST directive. Note that listing generation
is turned on if a listing file is specified on the command line; put
NOLIST at the start of your program if you do not wish to
produce a full listing.

Greater control over listings can be achieved by using LIST
with ‘+’ or ‘-’ as a parameter to turn listing on or off
respectively. The assembler has an internal listing state starting
at 0 which can be incremented or decremented; listings are
generated only when the value of this state is non-negative. If a
listing file is specified then the internal listing state will be set to
zero i.e. listing will be turned on at the start of the program.
LIST+ and LIST- can then be used to increment or decrement
the value of the listing state respectively. LIST with no
parameter sets the value of the listing state to zero.

Listings

5-33

Syntax

list Operand
...
nolist

where:

Operand is an optional parameter which can be

- Decrement the internal listing counter.
+ Increment the internal listing counter.

Example 1

nolist ; State=-1, no listing
; This comment will not be listed

list ; State=0, listing
; This comment will be listed

list- ; State=-1, no listing
; This comment will not be listed

list- ; State=-2, no listing
; This comment will not be listed

list+ ; State=-1, no listing
; This comment will not be listed

list+ ; State=0, listing
; This comment will be listed

Example 2

nolist
opt ow+,oz+
opt os+,v+
...

Assembler Directives

5-34

5.7 Including Other Files
The assembler provides the ability to include binary files in
source code. As a project grows you will almost certainly want
to break the source code into several smaller files in order to
make the code more manageable or use some parts in other
programs. The assembler can include source files, binary files,
or specified parts of a binary file in the main body of a program.

5.7.1 The Standard INCLUDE File
The assembler will automatically include a standard include file
if it is present in the same directory as the assembler. This file
contains, among other things, extensions to the standard
SNASM2 directive names and can be edited using a text editor.
The file name is of the form SNASMxxx.MAC where xxx is the
last 3 characters of the assembler executable name. The
assembler treats this file as the first include in the assembly. If
such a file is not present it is not included and no error is
generated.

5.7.2 INCLUDE
Normally there will be one ‘root’ file which includes all the
other parts of your code. To do this use the INCLUDE directive
which tells the assembler to process another file before
continuing with the current one. The line containing the
INCLUDE statement is replaced with the contents of the
specified source file. These included files can themselves
include other files with the total number of include files limited
only by the amount of main memory.

Including Other Files

5-35

Syntax

include [?,][~]Filename[, Type]

where:

? causes the include to be conditional upon the
existence of Filename. Using INCLUDE
without the ? parameter causes the assembler
to generate an error if Filename cannot be
found. Using INCLUDE with the ? parameter
causes the assembler to treat INCLUDE as a
NOOP if Filename cannot be found.

~ Sets the search path to the directory from
which the assembler was invoked.

Filename is the name of the source code file to include.

Type is an optional qualifier that can be:

68k|sh2 |asm|c Source file
cof |o|obj Object file
lib Library file
bin Binary file

Without a Type qualifier the file type is taken
from the filename extension or treated as a
source file if no extension is specified. The
Type qualifier can be used to override the
default associations with filename extensions
or to use a non-standard extension.

68000

Example

StartUpCode jmp MainEntry
include 'equs.asm'
include c:\general\maths.asm

MainEntry lea MyStack,sp
...

Assembler Directives

5-36

SH2

Example

StartUpCode bra MainEntry
nop
include 'equs.asm'
include c:\general\maths.asm

MainEntry mov #MyStack,sp
...

If the text following the backslash could be confused with a
string equate you should use a second backslash or enclose the
full file name in optional quotes. If the file cannot be found it
will be searched for in the directories specified by the j switch.

Including Other Files

5-37

5.7.3 INCBIN
The INCBIN directive enables binary data such as graphics or
music to be included in a program. The assembler does not
know about the internal structure of data stored in binary format
so the data must have a label on it and offsets into it handled
manually.

See also
“FILESIZE”
on page
4-42.

To determine the size of a binary file before it is included, use
the FILESIZE function which returns the size of a file in bytes
or -1 if the file cannot be found.

Syntax

incbin [?,][~]Filename[, Start[, Length]]

where:

? causes the include to be conditional upon the
existence of Filename. Using INCLUDE
without the ? parameter causes the assembler
to generate an error if Filename cannot be
found. Using INCLUDE with the ? parameter
causes the assembler to treat INCLUDE as a
NOOP if Filename cannot be found.

~ Sets the search path to the directory from
which the assembler was invoked.

Filename is the name of the binary file to include.

Start is the position in the binary file from which to
start including data, specified in bytes from 0.
If no start position is specified the default
value of 0 is used.

Length is the length of data to include, specified in
bytes as an offset from Start. If no length is
specified the offset will be to the end of the
file.

Assembler Directives

5-38

68000

Example 1

lea SineTable,a0
add.w d0,d0
add.w d0,a0

; Index words in sine table
...

SineTable incbin 'c:\tables\sintab.bin'

SH2

Example 1

mov #SineTable,r0
add.w r1,r1
add.w r1,r0

; Index words in sine table
...

SineTable incbin 'c:\tables\sintab.bin'

Example 2

BackDropPalette incbin ..\grafix\backdrop.pal
BackDimPalette incbin ..\grafix\backdimp.pal
Main3dPalette incbin ..\grafix\textures.pal

Setting Target Parameters

5-39

5.8 Setting Target Parameters

5.8.1 REGS
Use the REGS directive within a group to set the value of the
target registers. Typically REGS is used to set the program
counter to the address at which program execution is to begin
and the value of the status register at this time. As the 68000 has
two stack pointers you need to be specific about which you
mean by using USP and SSP.

REGS can be used when assembling directly to the target or
when generating files for subsequent execution. However,
REGS cannot be used when producing pure binary formats.

Assembler Directives

5-40

Syntax

regs Register=Value[, Register=Value]

where:

Register The register names valid here can be an
extended set of the register names available
for programming since processors often
include registers which cannot be accessed
directly form the instruction set.

Value is an expression specifying the value to assign
to the register. The expression can contain
forward references and can even be left until
link time.

Example

org $400
regs pc=CodeStart,sr=$2700,ssp=*

CodeStart lea MyStack,a7
...

Conditional Assembly

5-41

5.9 Conditional Assembly

See also
“Conditiona
l Assembly
(IFxx)
Macros” on
page 6-16.

Conditional assembly structures enable the behaviour of an
assembly to be modified under different conditions. The
assembler supports six types of conditional assembly structures
for evaluating conditions and assembling the correct portion of
code as a result. The structures are END,
IF...ELSE...ELSEIF...ENDIF, CASE...ENDCASE,
REPT...ENDR, WHILE...ENDW and DO...UNTIL.

There is no maximum nesting level of conditional assembly
blocks. When repeating blocks of code, the current value of the
loop counter is contained in the pre-defined symbol
_RCOUNT. Each loop acquires its own local loop counter so
the value of _RCOUNT is local to the loop in which it is
referenced.

Labels can be placed on conditional assembly directives and
used anywhere in expressions. In a CASE statement however,
placing a label on the ‘=’ case selector character, will cause it to
be interpreted as a SET directive.

Assembler Directives

5-42

5.9.1 END (.END)
The END directive tells the assembler to stop processing text. It
is optional as the assembler automatically stops when the end of
the source file is reached. END has an optional parameter which
can be used to specify the execution address of the program.
This is not recommended as the REGS directive can be used to
achieve the same effect.

Syntax

end [Expression]

where:

Expression optionally specifies the execution address of
the program.

The .END extension is provided via the standard include file
SNASMSH2.MAC and can be changed by editing that file.

Example 1

org $200
Main body of code
end

68000

Example 2

StartUp lea Mystack.sp
...
jmp MainLoop
end StartUp ;Start at

StartUp

SH2

Example 2

StartUp mov #Mystack.sp
...
bra MainLoop
nop
end StartUp ;Start at

StartUp

Conditional Assembly

5-43

5.9.2 IF...ELSE...ELSEIF and ENDIF
See also
“CASE...
ENDCASE”
 on page
5-46.

These directives control which parts of the program are
assembled according to the result of an expression. They are
primarily used to expand different parts of macros under
different conditions but can also be used to generate several
versions of the program.

The IF directive marks the beginning of the conditional block
and has one parameter, an expression. If the expression
evaluates to True (i.e. non-zero) then the code following IF and
up to the next ELSE, ELSEIF or ENDIF is assembled. If the
expression evaluates to False (i.e. zero) then the code up to a
ELSE, ELSEIF, or ENDIF is skipped. If an ELSE part is
present and none of the conditions are met the code between the
ELSE and ENDIF (or ENDC) is assembled. For compatibility
with other assemblers the ELSEIF directive can be used without
any parameters in which case it acts exactly like the ELSE
directive. In addition, ENDIF can also be written as ENDC.

Assembler Directives

5-44

Syntax

if IfCondition
 ThenPart
elseif ElseifCondition
 ElseifPart
[elseif Condition
 ElseifPart]...
[else
 ElsePart]
[endif |endc]

where:

IfCondition is an expression which must evaluate to a
value.

ElseifCondition is an expression which must evaluate to a
value.

Condition is an expression which must evaluate to a
value.

ThenPart is a block of code. This can have nested
control constructs as long as they are
balanced.

ElsePart is a block of code. This can have nested
control constructs as long as they are
balanced.

ElseifPart is a block of code. This can have nested
control constructs as long as they are
balanced.

Conditional Assembly

5-45

Example 1

See also
“CASE...
ENDCASE”
, Example 1
on page 5-
47

False equ 0
True equ -1
LargeBuffer equ True

...
If LargeBuffer
 ds.b 1024

 else
ds.b 256

endif

The logical Not operator (‘~’) can be used to branch on the
opposite of a condition but care should be taken to parenthesise
the expression correctly. In the following examples to branch
on the language not being German use

if ~(Language=German)

but a common mistake is to write

if ~Language=German

which logically negates only Language and not the whole
expression.

Assembler Directives

5-46

Example 2

See also
“CASE...
ENDCASE”
, Example 2
on page 5-
48

This example assembles the correct string to order two drinks
according to the current language.

Englsh equ 0
American equ 1
French equ 2
German equ 3
Language equ English

...
; Assemble the correct string to order two
; drinks according to the current language.

if
(Language=English)|(Language=American)

 dc.b ‘Two beers please’,0
elseif Language=French

 dc.b ‘Deux bieres s’’il vous
plait’,0

elseif Language=German
dc.b ‘Zwei Bier bitte’,0
else
inform 2,"Unknown language"

endif

5.9.3 CASE... ENDCASE
See also
IF...
ELSEIF...
ELSE...
ENDIF
on page
5-43

The CASE...ENDCASE structure enables the assembly of a
specific block of code given a set of choices. CASE tests the
value of an expression against a list of possible values; when it
finds a match the specified code is assembled and the assembler
moves on to the first instruction after the ENDCASE directive.
If the optional ‘=?’ case is used and none of the
SelectorExpression’s match Expression this block of code will
be assembled otherwise no code will be assembled inside the
CASE... ENDCASE construct. The ‘=?’ must be the last choice
in the list or the assembler will generate a warning.

Conditional Assembly

5-47

Syntax

case Expression

[=SelectorExpression[, SelectorExpression]...]
...
[=SelectorExpression[, SelectorExpression]...]
...
[=?]
...
endcase

where:

Expression is an expression which must evaluate.

SelectorExpressionis an expression which must evaluate.

Example 1

See also
“IF...
ELSEIF...
ELSE...
ENDIF”,
Example 1
on page 5-
45

False equ 0
True equ -1
LargeBuffer equ True

...
case LargeBuffer

=False
 ds.b 256

=True
 ds.b 1024
endcase

Assembler Directives

5-48

Example 2

See also
“IF...
ELSEIF...
ELSE...
ENDIF”,
Example 2
on page 5-
46

This example assembles the correct string to order two drinks
according to the current language.

English equ 0
American equ 1
French equ 2
German equ 3
Language equ English

...
case Language

=English,American
 dc.b ‘Two beers please’,0

=French
 dc.b ‘Deux bieres s’’il vous

plait’,0
=German

 dc.b ‘Zwei Bier bitte’,0
=?

 inform 2,"Error, unknown language"
endcase

5.9.4 REPT... ENDR
Use REPT and ENDR to repeat a short block of code a specified
number of times. The REPT directive signals the start of the
code to be repeated and takes an expression that specifies the
number of times the code can be repeated. The expression must
evaluate and not contain any external or undefined references.
The expression is evaluated once only at the point REPT is
encountered and so no statements in the repeated block can
affect the number of times the block is repeated. Also, the block
should not contain any unbalanced control statements. The
ENDR directive signals the end of the code to be repeated.

Conditional Assembly

5-49

See also
“_RCOUNT
”
on page 4-
30
and
“ALIAS”
on page 5-3

The assembler can access the iteration count from within the
body of the loop by using the pre-defined symbol _RCOUNT or
any symbol aliased to _RCOUNT.

Syntax

rept LoopCount
 LoopBody
endr

where:

LoopCount is an expression which must evaluate to a
value.

LoopBody is a block of code. This can have nested
control constructs as long as they are
balanced.

Example 1

68000

rept 16
move.w d0,-(a0)

endr

SH2

Example 1

rept 16
move.w r1,-(r0)

endr

Example 2

TableEntries equ 24
Index = 0

rept TableEntries
dc.w Index

Index = Index+64
endr

Assembler Directives

5-50

Example 3

TableEntries equ 24
Index = 0

rept TableEntries
dc.w _rcount*64

endr

Conditional Assembly

5-51

5.9.5 WHILE... ENDW
See also
“DO...
UNTIL” on
page 5-53.

The WHILE directive is used to repeat a short block of code
whilst an expression evaluates to true. The WHILE...ENDW
construct is similar to DO...UNTIL except that the condition is
checked at the start of the loop, not the end and the loop
terminates when the condition becomes False, not True. The
expression must evaluate to a value and the block is repeated as
long as the expression is True. The block will not be assembled
if the initial value of the expression is False.

String replacement in the WHILE expression is performed once
only, when the directive is encountered. This means that no
string changes in the block can affect the number of times the
block is repeated. The ENDW directive is used to signal the end
of the block of code to be repeated.

Syntax

while LoopCondition
 LoopBody
endw

where:

LoopBody is a block of code. This can have nested
control constructs as long as they are
balanced.

LoopCondition is an expression which must evaluate to a
value.

Example

68000

Factor equ 4

; Build the code required to multiply by factor
Temp = Factor

while Temp>1
 rol.w (a0)

Temp = Temp>>1
endw

Assembler Directives

5-52

SH2

Example

Factor equ 4

; Build the code required to multiply by factor
Temp = Factor

mov.l (r0),r1
while Temp>1
 rotl r1

Temp = Temp>>1
endw
 mov.l r1,(r0)

Conditional Assembly

5-53

5.9.6 DO... UNTIL
See also
“WHILE...
ENDW” on
page 5-51

The DO...UNTIL construct is similar to WHILE...ENDW
except that the condition is checked at the end of the loop, not
the beginning and the loop terminates when the condition
becomes True, not False. This means that the block will always
be assembled at least once, even if the initial value of the
expression is False.The DO directive signals the start of start of
the block to be repeated. The block is then repeated until the
UNTIL expression evaluates to True.

See also
“_RCOUNT
”
on page 4-
30
and
“ALIAS”
on page 5-3

The assembler can access the iteration count from within the
body of the loop by using the pre-defined symbol _RCOUNT or
any symbol aliased to _RCOUNT.

Syntax

do
 LoopBody
until LoopCondition

where:

LoopBody is a block of code. This can have nested
control constructs as long as they are
balanced.

LoopCondition is an expression which must evaluate to a
value.

68000

Example

Factor equ 4
; Build the code required to multiply by factor
Temp = Factor

do
 rol.w (a0)

Temp = Temp>>1
until Temp<=1

Assembler Directives

5-54

SH2

Example

Factor equ 4
; Build the code required to multiply by factor

mov.l (r0),r1
Temp = Factor

do
 rotl r1

Temp = Temp>>1
until Temp<=1
mov.l r1,(r0)

Manipulating Strings

5-55

5.10 Manipulating Strings
The assembler provides a range of pre-defined functions and
directives for string handling. These are usually used in macros
for comparing, searching and slicing strings. Note that
characters within a string are numbered from 1.

5.10.1 STRLEN
The STRLEN function is used to determine the number of
characters in a string. It can be used anywhere in an expression.

Example

;Macro to DC string preceded by its length
String macro

dc.b strlen(\1),\1
endm
...
String ‘Hello’

5.10.2 STRCMP and STRICMP
Use the STRCMP and STRICMP functions to compare two
strings. The comparison is case sensitive for STRCMP and case
insensitive for STRICMP. If the two strings are identical the
function returns True (-1), otherwise False (0).

Assembler Directives

5-56

Example

Language equs ‘English’
...

; Assemble correct order according to current
language

if
strcmp(‘\Language’,‘English’)

 dc.b‘Two beers please’,0
 else

 if strcmp(‘\Language’,‘French’)
 dc.b ‘Deux bieres s''il vous

plait’,0
 else
 if strcmp(‘\Language’,‘German’)
 dc.b‘Zwei bier bitte’,0
 endif

 endif
endif

5.10.3 INSTR and INSTRI
The INSTR and INSTRI functions are used to see if one string
is contained within another. INSTR performs a case sensitive
search and INSTRI performs a case insensitive search. If a
string does contain a sub-string then these functions return the
position of the first character of the sub-string, otherwise they
return zero. These functions have an optional parameter which
specifies the start position (in the string) of the search. Note that
the sub-string is always reported relative to the start of the string
and not the start of the search.

Example

Version equs ‘Internal test version 0.9’
...

;Set DebugMode if version string contains
‘test’

if instr(‘\Version’,‘test’)
DebugMode = -1

 else
DebugMode = 0

endif

Manipulating Strings

5-57

5.10.4 SUBSTR
The SUBSTR directive is similar to EQUS in that it is used to
equate a string to a symbol. However, SUBSTR also allows you
to specify the start and end characters of the string.

Syntax

Symbol substr [Start],[End],String

where:

Symbol is the symbol to be assigned to the sub-string.

Start is the starting position of the sub-string in
String to be assigned to Symbol.

End is the end position of the sub-string in String
to be assigned to Symbol.

String is the string containing the sub-string.

Example

TestStr equs ‘What does this do?’

Temp1 substr 1,18,’\TestStr
; This is the same as
; Temp1 equs ‘What does this do?’

Temp2 substr 6,9,‘\TestStr’
; Temp2 will equal ‘does’ (without the quotes)

Temp3 substr ,4,‘\TestStr’
; Temp3 will equal ‘What’

Temp4 substr 6,,‘\TestStr’
; Temp4 will equal ‘does this do?’

Assembler Directives

5-58

5.11 Modules
Modules are self-contained sections of code, delimited using the
MODULE and MODEND directives. Modules are used to
control the scope of local labels and are strongly recommended
as they rigidly define where local labels can and cannot be
referenced.

5.11.1 Local Labels in Modules
A local label is assumed to be inside a module if it is defined on
any line after the MODULE directive up to and including the
line on which the MODEND directive occurs. Local labels
defined on same line as a MODULE directive are considered to
be in the outer scope. A local label defined in a module cannot
be referenced outside that module and so can be reused
elsewhere. Similarly, local labels defined outside a module
cannot be referenced from within it. Modules take precedence
over the ‘between non-local labels’ form of scoping but this
form can still be freely used outside of modules. Modules can
be nested but scoping is not. i.e. the only local labels available
inside a module are those defined within it.

Syntax

module
...
modend

Modules

5-59

68000

Example 1

ClearData module

@Loop move.w d0,d2
bsr @ClearIt
dbra d1,@Loop
nop
rts

@ClearIt module

@Loop clr.b (a0)+
dbra d2,@Loop
rts

modend
; End of @ClearIt

;A reference to @Loop would refer to the first
;definition as we are back in the module
ClearData.

modend
;End of ClearData

Assembler Directives

5-60

SH2

Example 1

ClearData module

@Loop move.w r0,r2
bsr @ClearIt
dbra d1,@Loop
nop
dt r1
bf @Loop
rts
nop

@ClearIt module

mov #0,r0
@Loop mov.b r0,(a1)

add #1,a1
dt r2
bf @Loop
rts
nop

modend
; End of @ClearIt

;A reference to @Loop would refer to the first
;definition as we are back in the module
ClearData.

modend
;End of ClearData

Modules

5-61

68000

Example 2

This example works only if it is enclosed in a module otherwise
the assembler generates an error on the last line because the
DBRA is not within the scope of @LOOP.

; The following code will only work if it is all
; enclosed in a module.

@Loop movem.w d7,-(sp)
...

@SubModule module
...
modend
movem.w (sp)+,d7
dbra d7,@Loop

SH2

Example 2

This example works only if it is enclosed in a module otherwise
the assembler generates an error on the last line because the
DBRA is not within the scope of @LOOP.

; The following code will only work if it is all
; enclosed in a module.

@Loop move.w r7,-(sp)
...

@SubModule module
...
modend
move.w (sp)+,r7
dt r7
bf @Loop

Assembler Directives

5-62

5.12 Options and 68000 Optimisations
The assembler has several options and optimisations which
control the assembly process. They can be set from the
command-line when invoking the assembler or from within
source code using the OPT, PUSHO and POPO directives. The
options and optimisations are briefly reviewed here.

5.12.1 Options
Options provide control the behaviour of the assembler and how
it outputs information to the screen, listing and object file. They
can be set from the command-line or from within your source
using the OPT directive. However, it is recommended that
production code always sets options from within the source file
as they can significantly alter the code generated and can cause
assembly errors if not correctly set.

The options are described in the table below. Do not use white
space between the option name and the ‘+’ or ‘-’ and separate
multiple options with commas (white space is allowed after the
comma but not before it).

Options and 68000 Optimisations

5-63

.

Option Default Description

ae+/- On Automatic Even. This forces the
program counter to the next word
boundary before assembling the
word and long forms of DC, DCB,
DS and RS.

an-/+ Off Alternate Numeric. Allows the use
of character suffixes H, D, Q and B
to denote Hexadecimal, Decimal,
Octal and Binary constants
respectively.

bin-/+ Off Show Binary. Show all code bytes
in the listing file.

c-/+ Off Case Sensitivity. By default all
symbols are case insensitive, for
example Main and main are treated
as the same label. Enable this
option to make labels case
sensitive so that Main and main
would be two distinct labels.

d-/+ Off Descope Local Labels. By default
the EQU and SET directives do not
affect the scope of local labels. Set
this option if you want these
directives to descope local labels
defined outside a module.

Assembler Directives

5-64

g-/+ Off GNU mode. Toggles between
standard (g-) and GNU C (g+)
interpretations of the PC Relative
with Displacement (disp:8,PC)
addressing mode. In standard mode
the ‘disp:8’ expression is
interpreted as already PC relative.
In GNU mode the ‘disp:8’
expression is modified by the PC
value. See also the pcrel option
below.

l-/+ Off Local Label Character. Toggle
between ‘.’ (l+) and ‘@’ (l-) as
the local label character.

l Value Define the local label character
where Value is the ASCII code for
the character. Valid local label
characters are ‘@’, ‘.’, ‘:’, ‘?’, ‘|’
and ‘!’ only. Unless specified
otherwise using the l option, the
default local label character is ‘@’.

lf-/+ Off List Failed. This lists instructions
not assembled due to conditional
assembly statements.

m-/+ Off List Macros. Lists macro
expansions in listing file.

mc-/+ Off Show Macro Calls. In the listing
file, shows each macro invocation
including nested macros and the
nesting level.

pcrel-/

+

Off PC Relative Syntax. Enable GNU
interpretation of PC Relative with
Displacement address modes only.
See also the GNU Mode option
above.

Option Default Description

Options and 68000 Optimisations

5-65

s-/+ Off Equated Symbols as Labels. Treat
equated symbols as labels.

t-/+ Off Truncate. Truncates out of range
parameters for DC, DCB, and DW.
If this option is not enabled, out of
range parameters will generate an
error.

v-/+ Off Writes local labels to the symbol
tableand puts them in the COFF
and MAP files.

w+/- On Suppress warnings. Warnings are
not errors but unusual occurrences
that can be reported.

ws-/+ Off Allow white space. This allows
space and tab characters in
operands to increase code
readability. Normally whitespace
terminates the operand field and
begins the comment field. With the
WS option enabled the comment
field must begin with a semi colon
(;) and white space in the operand
field is ignored.

x-/+ Off External symbols. Assume external
symbols are in the section they are
declared in.

Option Default Description

Assembler Directives

5-66

68000

Example

opt c- ;Case insensitive
Fred dc.w 5

move #FRED,d0
add #fred,d0

opt c+ ;Case sensitive

move #FRED,d0 ;Error
add #fred,d0 ;Error
sub #Fred,d0 ;OK

SH2

Example

opt c- ;Case insensitive
Fred dc.w 5

move #FRED,r0
move #fred,r0

opt c+ ;Case sensitive

move #FRED,r0 ;Error
move #fred,r0 ;Error
move #Fred,r0 ;OK

Options and 68000 Optimisations

5-67

5.12.2 68000 Optimisations
Optimisations modify source statements so that they use more
efficient addressing modes and instructions where possible.
However, they cannot be performed on expressions containing
forward references.

The optimisations are described in Table 5-1 on page 5-67.
They can be set from the command-line or from within source
code using the OPT directive. Do not use white space between
the optimisation name and the ‘+’ or ‘-’ and separate multiple
options with commas (white space is allowed after the comma
but not before it).

.

Optimisation Description

op+/- PC Relative. Changes absolute long
addressing to PC relative addressing if
possible and legal.

os+/- Short Branch. Forces forward references
in relative branches to use the short form
of the instruction.

ow+/- Absolute Word. Forces absolute word
addresses to short word addressing if in
range.

oz+/- Zero Displacement. Changes address
register indirect with displacement to
address register indirect if the
displacement evaluates to zero.

oaq+/- Quick ADD. Changes the ADD
instruction to the shorter ADDQ.

osq+/- Quick SUB. Changes the SUB instruction
to the shorter SUBQ.

omq+/- Quick Move. Changes the MOVE.L
instruction to the shorter MOVEQ.
MOVE.W is not changed as MOVEQ is
defined as long.

Table 5-1. Assembler command-line optimisations.

Assembler Directives

5-68

5.12.3 OPT
Use OPT to set the assembler options and optimisations for the
subsequent source.

Syntax

opt [ae{ +|- } | an{ - |+} | bin { - |+} | c{ - |+} | d{ - |+} |
l { - |+|Value} | lf { - |+|Value} | m{ - |+} | mc- |+} |
op{ +|- } | os { +|- } | ow{ +|- } | oz { +|- } | oaq { +|-
} | osq { +|- } | omq{ +|- } s{ - |+} | t { - |+} | v{ - |+}
| w{ +|- } | ws{ - |+} |
x{ - |+}]

where:

ae Automatic even option.
an Alternate numeric option.
bin Show binary option.
c Case sensitivity option.
d Descope local labels option.
l Local label character option.
lf List failed option.
m List macros option.
mc Show macro calls.
op PC relative optimisation.*
os Short branch optimisation. *
ow Absolute word optimisation. *
oz Zero displacement optimisation. *
oaq Quick ADD optimisation. *
osq Quick SUB optimisation. *
omq Quick MOVE optimisation. *
s Equated symbols as labels option.
t Truncate option.
v Write local labels to COFF file option.
w Print warnings option
ws Allow white space option.
x External symbols.

* 68000 only

Options and 68000 Optimisations

5-69

Example

This example sets the automatic even, equated symbols as
labels, case sensitivity and write local labels to COFF File
options and enables the short branch, absolute word and zero
displacement options.

opt ae+,s+,c+,v+,os+,ow+,oz+

5.12.4 PUSHO and POPO
The PUSHO and POPO directives can be used to temporarily
change options and optimisations during assembly. This
enables the assembler to be invoked using the normal settings,
one or more settings to be changed at some point in the source
code and then changed back again. The PUSHO directive saves
the current state of all the options and optimisations and POPO
restores the state previously saved using PUSHO.

Syntax

pusho
...
popo

Example

pusho ; save state of
options

opt ae- ; turn off auto even
ByteStream dc.b 3

dc.w 456
dc.w 512,80
popo ; restore state

Assembler Directives

5-70

5.13 Custom Errors and Warnings
The assembler provies the ability to generate your custom errors
and warnings. This is useful for generating messages for error
conditions that the assembler cannot detect such as a data table
becoming too large.

5.13.1 INFORM
Use the INFORM directive to generate errors of varying
severity and display a message explaining the error in detail.
The directive takes two or more parameters, the severity and a
message string plus any optional operands.

Syntax

inform Severity,String[,Operand]...

where:

Severity An integer in the range 0..3 inclusive that
determines the action to be taken, where:

0 Prints a message but no action is taken.
1 Generates a Warning.
2 Generates an Error.
3 Generates a Fatal Error.

String The message you wish to display. A more
informed message can be displayed using the
%d, %h and %s parameters where:

%dSubstitutes the decimal value of the
operand.

%hSubstitutes the hex value of the operand.
%s Substitutes the string value of the operand.

Operand An optional parameter which can be an
expression or a string.

Custom Errors and Warnings

5-71

Example 1

StartSlowRAMequ *
...

SlowRAMSize equ *-StartSlowRAM
...
inform0,"Slow RAM size:

$%h",SlowRAMSize

Example 2

StrucBegdc.w 0
...

StrucEnd
StrucLenequ StrucEnd-StrucBeg

if StrucLen>1024
 inform 0,‘Beg=%h

End=%h’,StrucBeg,StrucLen
 inform 2,‘Structure too long’
endif

5.13.2 FAIL
The FAIL directive is supported for compatibility and is the
equivalent of:

 inform 3,’Assembly failed’

Assembler Directives

5-72

5.14 Linking
Linking enables programs to be written in separate parts and
subsequently combined to be sent direct to memory or to
produce a single object file. This enables sections and groups to
be built from sub-files and for address references between
object files to be resolved. Link facilities are fully integrated
into the assembler providing a combined ‘linking assembler’.
This offers the benefit of a unified command file for both
assemble and link instructions so that the full range of assembly
commands are available when linking. In addition, code that
uses libraries can be linked in a single step rather than requiring
two phases.

Linking often creates the need to reference symbols defined in a
different program component to the current one. To reference a
symbol in another component first use the EXPORT directive to
declare the symbol as external in the component that the symbol
was defined. Then, in the component that will use the symbol,
use the IMPORT directive to declare that the symbol has been
defined in another component. The PUBLIC directive is used to
declare a large group of symbols as external without the need to
use EXPORT for each symbol. Alternatively, use the GLOBAL
directive in place of both EXPORT and IMPORT and let the
assembler determine whether an IMPORT of EXPORT will
ultimately be required.

Note As linking is closely related to the concept of sections and
groups this section on linking should also be read in
conjunction with the chapter on Sections and Groups starting
on page 7-1

Linking

5-73

5.14.1 EXPORT (.EXPORT)
The EXPORT directive enables symbols defined in the current
file to be visible to the linker so that they are available to other
program files. All references to the EXPORTed symbol will be
resolved by the linker.

Syntax

export Label [,Label]...

where:

Label is any symbol defined by this statement.

The .EXPORT extension is provided via the standard include
file SNASMSH2.MAC and can be changed by editing that file.

68000

Example

import.w Table
export Routine1,Routine2

Routine1 lea Table,a0
...

Routine2 mulu d0,d0

SH2

Example

import.w Table
export Routine1,Routine2

Routine1 mov #Table,r0
...

Routine2 add r0,r0

Assembler Directives

5-74

5.14.2 IMPORT (.IMPORT)
The IMPORT directive provides the ability to reference
symbols defined in other program components, leaving label
resolution to the assembler. By default the assembler does not
know where to find an imported symbol so it makes no
assumptions as to it location. Enabling the external symbols
option (x+) makes the assembler assume that the imported
symbol comes from the currently active section. IMPORT
should not be defined in the current module or assembler will
generate a warning.

Syntax

import [.Qualifier] Label[, Label]...

where:

Label is any symbol previously defined in another
source code module.

Qualifier is an optional qualifier that can be:

.b Byte data

.w Word data

.l Longword data

The .IMPORT extension is provided via the standard include
file SNASMSH2.MAC and can be changed by editing that file.

68000

Example

export Table
import Routine1,Routine2

section Tables,BssGroup
Table ds.w 100

section Code,Text
jsr Routine1
jsr Routine2

Linking

5-75

SH2

Example

export Table
import Routine1,Routine2

section Tables,BssGroup
Table ds.w 100

section Code,Text
bsr Routine1
nop
bsr Routine2
nop

5.14.3 PUBLIC
The PUBLIC directive enables you to declare a large group of
symbols as external without having to explicitly use the
EXPORT directive for each symbol. PUBLIC can take two
arguments, ON and OFF. To declare symbols as external set
PUBLIC to ON, define your symbols as normal and then set
PUBLIC to OFF as in the example below.

Syntax

public { on | off | Flag}

where:

on Sets PUBLIC active.

off Sets PUBLIC inactive.

Flag is a string equate whose value has been set to
the string “ON” or “OFF”.

Example

public on
Speed dc.w 50 ; No need to EXPORT
Speed
Direction dc.w 100 ; or Direction

public off

Assembler Directives

5-76

5.14.4 GLOBAL (.GLOBAL)
Sometimes it may be unclear whether symbol needs to be
declared as external or if a symbol to be referenced has been
declared as external in another program component. In these
cases the GLOBAL directive enables you to substitute for
EXPORT or IMPORT where it is not clear which is required. If
the symbol is eventually defined an EXPORT will be
performed, otherwise an IMPORT will be assumed.

Syntax

global Symbol [,Symbol]...

where:

Symbol is a symbol defined by this statement.

The .GLOBAL extension is provided via the standard include
file SNASMSH2.MAC and can be changed by editing that file.

5.14.5 Introduction to Linking
This section introduces linking using SNASM2 by providing a
step-by-step guide to converting a single source file into two
linkable files. This conversion covers all the stages involved
from the changes required to source files to command-line
syntax. To start, consider the source file below. This has two
groups, G1 and G2. The group G1 has two sections, S1 and S3
where S1 contains the routine FUNC1 and S3 contains the
FUNC3 routine. The group G2 also has two sections, S2 and S4
where S2 contains the routine FUNC2 and S4 contains the
FUNC4 routine.

Linking

5-77

68000

group g1,org $100
group g2,org $1000

section s1,g1
start:

jsr func1
jsr func2
jsr func3
jsr func4

func1
move.l #1,d0
addq #4,d0
rts

section s3,g2
func2

move.l #2,d0
addq #4,d0
rts

section s3,g1

func3
move.l #3,d0
addq #4,d0
bra func1
rts

section s4,g2
func4

move.l #4,d0
addq #4,d0
bra func2
rts

ds.b 1000
stack:

Assembler Directives

5-78

SH2

group g1,org $100
group g2,org $1000

section s1,g1
start:

bsr func1
nop
bsr func2
nop
bsr func3
nop
bsr func4
nop

func1
move #1,r0
add #4,r0
rts
nop

section s3,g2
func2

move #2,r0
rts
add #4,r0 ; Delay slot

section s3,g1
func3

move #3,r0
add #4,r0
bra func1
nop
rts
nop

section s4,g2
func4

move #4,r0
add #4,r0
bra func2
nop
rts
nop

ds.b 1000
stack:

Linking

5-79

Now suppose that the above code could be split into two
separate but inter-related parts such that one part contains the
code for FUNC1 and FUNC2 but also needs to make use of
FUNC3 and FUNC4 and similarly, the other part contains the
code for FUNC3 and FUNC4 but needs to make use of FUNC1
and FUNC2. The two parts could be written to separate files,
TEST1.ASM and TEST2.ASM for example, which could
subsequently be linked together to achieve the same effect as
the code in the original single file. TEST1.ASM would be as
follows:

68000

export start,func1,func2
 import func3,func4

section s1
start:

jsr func1
jsr func2
jsr func3
jsr func4

func1
move.l #1,d0
addq #4,d0
rts

section s3
func2

move.l #2,d0
addq #4,d0
rts

Assembler Directives

5-80

SH2

export start,func1,func2
 import func3,func4

section s1
start:

bsr func1
nop
bsr func2
nop
bsr func3
nop
bsr func4
nop

func1
move #1,r0
add #4,r0
rts
nop

section s3
func2

move #2,r0
add #4,r0
rts
nop

The START routine needs to make use of FUNC3 and FUNC4
which are in TEST2.ASM. The IMPORT directive enables
START (and any other section of code) to reference FUNC3
and FUNC4. Not IMPORT’ing FUNC3 and FUNC4 would
cause the assembler to generate a ‘symbol not defined error’
when assembling TEST1.ASM. Similarly, TEST2.ASM
requires the use of START, FUNC1 and FUNC2 so they must
be made available to TEST2.ASM (and any other source files)
by means of the EXPORT directive. Not EXPORT’ing START,
FUNC1 and FUNC2 would cause the assembler to generate a
‘symbol not defined error’ when assembling TEST2.ASM.

Linking

5-81

Note that the GLOBAL directive could have been used in place
of IMPORT and EXPORT as shown below.

global start,func1,func2
 global func3,func4

Hence, on finding that FUNC3 and FUNC4 had not been
defined TEST1.ASM, the first GLOBAL directive would
behave in the same way as the IMPORT directive. Similarly, as
START, FUNC1 and FUNC2 are defined in TEST1.ASM the
second GLOBAL directive would behave as it were an
EXPORT directive.

Note also that the groups to which sections S1 and S2 are to be
allocated have been are no longer defined in the source file.
When linking, the definition of groups and the allocation of
sections to groups can be left until later and is typically done
from within the root file used to include the various project
components. A sample root file is described later on.

The TEST2.ASM file is shown below. The IMPORT directive
enables FUNC3 and FUNC4 (plus any other section of code) to
reference FUNC1 and FUNC2 respectively. Not IMPORT’ing
FUNC1 and FUNC2 would cause the assembler to generate a
‘symbol not defined error’ when assembling TEST2.ASM.
Similarly, TEST1.ASM requires the use of FUNC3 and FUNC4
so they must be made available to TEST1.ASM (and any other
source files) by means of the EXPORT directive. Not
EXPORT’ing FUNC3 and FUNC4 would cause the assembler
to generate a ‘symbol not defined error’ when assembling
TEST1.ASM.

Assembler Directives

5-82

68000

export func3,func4
import func1,func2
section s3

func3
move.l #3,d0
addq #4,d0
bra func1
rts

section s4

func4
move.l #4,d0
addq #4,d0
bra func2
rts

ds.b $1000
stack:

Linking

5-83

SH2

export func3,func4
import func1,func2
section s3

func3
move #3,r0
add #4,r0
bra func1
nop
rts
nop

section s4

func4
move #4,r0
add #4,r0
bra func2
nop
rts
nop

ds.b $1000
stack:

Assembler Directives

5-84

The two source files TEST1.ASM and TEST2.ASM now
require assembling prior to linking. Although the linker is
incorporated into the assembler, assembly and linking of the
same source file cannot be performed at the same. This is
because it would create a situation where the assembler would
attempt to both define and import symbols at the same time so
that references to symbols could never be resolved. As such,
assembly and linking remain two distinct processes.

To produce linkable object files the assembler must be invoked
with the linkable output switch (/l). The following example
produces an output file TEST1.COF that can either be linked
with other COFF object files.

68000

snasm68k /l test1.asm,test1

SH2

snasmsh2 /l test1.asm,test1

Before progressing, it is worth remembering that multiple files
can be assembled or linked at the same time. The following
example assembles both TEST1.ASM and TEST2.ASM to
produce a single linkable output file TEST.COF.

68000

snasm68k /l test1.asm+test2.asm,test

SH2

snasmsh2 /l test1.sh2+test2.sh2,test

See also
“SNMAKE”
on page
9-1.

However, assemblies involving multiple source files can be
achieved
more efficiently by using the make utility SNMAKE.

Multiple object files can be linked as follows:

Linking

5-85

68000

snasm68k /l test1.cof+test2.cof,t4:

SH2

snasmsh2 /l test1.cof+test2.cof,t1:

This will link TEST1.COF and TEST2.COF together and
download them to the appropriate target. Note that files linked
in this way must have the .COF file extension in order for the
assembler to determine that they are object files. Otherwise, the
assembler and will attempt to assemble the files as if they were
source files.

To return to the discussion, assume that the source files
TEST1.ASM and TEST2.ASM have been assembled to
produce corresponding linkable output files TEST1.COF and
TEST2.COF. The issue of sections and groups can now be
addressed. As stated earlier, this is typically done from the root
file. The root file TEST.ASM, shown below, includes the two
object files TEST1.COF and TEST2.COF and orders groups
and sections within groups.

group g1,org $8000
group g2,org $9000

section s1,g1
section s3,g1

section s2,g2
section s4,g2

regs pc=start

include test1.cof
include test2.cof

The root file can now be assembled as follows:

Assembler Directives

5-86

68000

snasm68k test.asm,t4:test

SH2

snasmksh2 test.asm,t1:test

This example assembles TEST.ASM, downloads the object
code to target 7 and generates an executable COFF file
TEST.COF. The executable could also be downloaded to a
target using the debugger or the SNGRAB utility.

5.14.6 The Command File
See also
“Assembler
Command
Files” on
page 3-14.

Linking can be achieved either from the command-line or by
using a command file. Both assembly and link information is
specified in a single command file. This contains instructions on
which object files to use, their starting addresses and
information about groups. The following example command
file entry produces a linkable object file TEST.COF and
downloads it to the appropriate target.

test.asm,t4

If an object file extension other than .COF is used then object
files should be included in a command file as follows:

include test1.o,cof
include test2.o,cof

Library files can be included as follows:

include lib1,lib

Groups are normally placed in memory in the order in which
they are declared in a program. However, groups declared in a
program but not in the command file are placed at the end of the
declared groups. Sections within each group are placed in
memory in the order in which they are specified. Section
fragments from different source files are concatenated in the
order in which the source files are specified.

6-1

6 Macros
Macros provide the ability to assign a symbolic name to a
sequence of processor instructions and assembler directives.
The sequence can then be assembled whenever required by
invoking the symbolic name of the macro. Macros can be used
as many times as required and parameters passed to them,
simplifying programming and improving code readability.

The assembler enables you to:

• Define your own macros.
• Manipulate strings.
• Define conditional and repeatable blocks within a

macro.
• Control macro expansion listing.
• Manage macro memory use.

The topics covered in this section are:

• Introducing Macros
• Macro Parameters
• Short Macros
• Extended Parameters
• Advanced Macro features

Macros

6-2

6.1 Introducing Macros
There are three stages to macro use; definition, invocation and
expansion, described below.

6.1.1 Defining Macros
The MACRO directive is used to introduce the definition of a
macro and ENDM terminates the definition. All subsequent
statements up to the corresponding ENDM directive are then
copied into memory. A macro can subsequently be redefined at
any point in the program, the existing copy being automatically
removed from memory. Explicitly removing macros from
memory can be performed using the PURGE directive
discussed later.

See also
“Symbols

and
Periods”
on page

4-20.

The macro name is defined in the label field of MACRO. The
name can include periods but this is not recommended. A macro
can have the same name as a label as macro names are stored in
separate symbol table to normal symbols. This has been done so
that macro names do not clash with similarly named routines in
your main code. However, attempting to define a macro with
the name of a current directive or processor instruction will
cause the assembler to generate a warning stating that the macro
cannot be called. This situation can be avoided by using ALIAS
to alias the a directive or instruction, DISABLE to remove the
old name and then defining a macro using the old directive or
instruction name.

The assembler allows you to define nested macros - a macro
defined or redefined within a macro. How deeply macros can be
nested is limited only by the amount of available memory. The
assembler allows you to redefine or purge a macro within itself.
The redefinition or purge will take place only when the macro
exits.

Introducing Macros

6-3

Syntax

MacroName macro [ParameterList]
 MacroBody

[mexit]
endm

where:

MacroName is a symbol defined by this statement.

ParameterList is a comma delimited list of parameters. See
“Macro Parameters” on page 6-5.

MacroBody is a block of code which can include nested
macros and balanced control constructs. If a
structure is initiated in a macro it must be
terminated before the ENDM directive.
Similarly, a structure that was not initiated
within a particular macro cannot be
terminated from within that macro. In both
cases the assembler will generate an error.

6.1.2 Invoking a Macro
A macro is invoked by using its name as if it were an assembler
directive. This is known as a macro call. A macro can be called
with an optional modifier consisting of a period followed
immediately by any text. The modifier is usually used to convey
size information but can be any information required by the
macro such as whether a jump is long or short.

6.1.3 Expanding a Macro
When the source program calls a macro, the assembler
substitutes the statements within the macro definition for the
macro call statement. The MEXIT directive can be used within
a macro to immediately terminate the macro expansion. The
assembler then continues from the line after the macro call.
MEXIT is supported for compatibility only as the conditional
assembly macros render this directive redundant. If MEXIT is

Macros

6-4

used, care should be taken when using MEXIT as it creates
multiple exit points from the macro. Note that whilst both
MEXIT and ENDM terminate a macro expansion only ENDM
terminates a macro definition.

68000

Example 1

BIOSCall macro
move.w #\1,d0
if narg=2

 lea.l \2,a0
endif
jsr _CDBIOS
endm

SH2

Example 1

BIOSCall macro
move.w #\1,r0
if narg=2

 mov.l #\2,r0
endif
jsr _CDBIOS
nop
endm

Example 2

This macro checks that longs are on a long boundary. The
macro exit condition uses MEXIT as an illustration only as this
would be better implemented using the IF... ELSE... ENDIF
construct.

Longs macro
if (*&3)<>0
 inform 2,"Longs not on long

boundary"
 mexit
endif
dc.l 1,2,3
endm

Macro Parameters

6-5

6.2 Macro Parameters
Once a macro has been defined it can be called with up to 32
parameters. They can be used anywhere in the macro in the
same way as string equates as the assembler treats macro
parameters and string equates in a similar way. There are two
ways to access a parameter, as a numbered parameter which is
the parameter number preceded by a backslash, and as a named
parameter which uses the symbol given to the parameter when
the macro is defined. There are also three special parameters
that perform functions associated with the macro invocation.

6.2.1 Numbered Parameters
Numbered parameters are denoted with a backslash (‘\’)
followed by a number from 0 to 31. If this could cause
confusion as to where the macro parameter ends, use a second
backslash after the parameter. If a macro parameter needs to
include spaces or commas then the parameter should be
enclosed in angle brackets (‘<’ and ‘>’). These are not
considered to be part of the parameter, so if you need to include
a ‘<’ or ‘>’ you need to double up the required character to read
‘>>’ or ‘>>’.

Example 1

Lotus macro joe
while joe

; joe evaluated at each iteration
 shift
 dc.w joe
endw
endm
...
Lotus 1,2,3

Macros

6-6

Example 2

Slasher macro 1,2
; Single backslash used here

dc.b ‘X is \1 and Y is \2’
; Both backslashes required

dc.b ‘123\1\456’
endm

Example 3

infinite macro Jim
while \Jim

 shift
 dc.w \Jim

endw
endm
...
infinite 1,2,3

6.2.2 Named Parameters
The assembler allows you to use symbolic names for the
parameters \1 to \31 and these named parameters do not require
a preceding backslash when used in expressions.

Example

Scale macro X,Y,Factor
dc.w \X*Factor,\Y*Factor

Macro Parameters

6-7

6.2.3 Variable Numbers of Parameters
Macros can take variable numbers of parameters. NARG and SHIFT
are used to determine how many parameters a macro has and then to
step through them. When a macro is invoked, the number of
parameters is given by the pre-defined symbol NARG. The SHIFT
directive is used to remove the first parameter and renumber and
(less commonly) relabel the remaining parameters.

Syntax

shift

Example

; Double the given parameters and then DC them
DCx2 macro

rept narg
 dc.\0 \1*2

 shift
endr
endm
...
DCx2.w 2,8,9

; The words 4,16 & 18 are dc’d

Macros

6-8

6.2.4 Labels as Parameters
A macro can import the label on the macro invocation line and use it
in the same way as any other parameter. To do this the first named
parameter of the macro definition must be an asterisk (‘*’). Then ‘*’
is used to substitute for the label. The label must be explicitly defined
by the macro, it is not defined to be at the current program counter as
is usually the case. If the label is not defined * will be a null string,
possibly causing errors.

68000

Example

This macro assigns labels relative to the start of a data table.

RC macro *,Data
if strlen(‘*’)=0;Check for null *
 inform 2,‘Label undefined’
else

* equ *-VarBase ;L1 & L2 relative to
VarBase

rept narg(Data)
 dc.\0 \Data

 shift Data
endr
endm
...

VarBase equ *
L1 rc.w {1,2,3,4} ;L1 not treated as a
label
L2 rc.w {5,6,7,8} ;L2 not treated as a
label

...
lea VarBase(pc),a6
move.w L1(a6),d0

Macro Parameters

6-9

SH2

Example

This macro assigns labels relative to the start of a data table.

RC macro *,Data
if strlen(‘*’)=0;Check for null

*
 inform 2,‘Label undefined’
else

* equ *-VarBase ;L1 & L2 relative
to VarBase

rept narg(Data)
 dc.\0 \Data

 shift Data
endr
endm
...

VarBase equ *
L1 rc.w {1,2,3,4} ;L1 not treated as
a label
L2 rc.w {5,6,7,8} ;L2 not treated as
a label

...
mov #VarBase(pc),r6
move.w L1(r6),r0

Macros

6-10

6.2.5 Special Parameters
There are three special parameters available for use in macros.
The ‘\0’ parameter denotes the size modifier of a macro when it
was invoked, the ‘_’ parameter returns a string containing the
entire macro parameter string and the ‘\@’ parameter which is
used to generate unique labels each time a macro is called.

The \0 Parameter

The ‘\0’ parameter denotes the size modifier of the macro when
it was invoked. The size is specified by a period and a size
modifier immediately following the macro name. If the macro is
invoked without a size modifier, ‘\0’ will be replaced with a null
string, the default value.

The _ Parameter

The ‘_’ parameter returns a string containing the entire
parameter string from the remainder of the macro invocation
line up to but not including the end of line or a comment. This
feature enables a macro to interpret its invocation line which is
useful when you are invoking a macro from within a macro.

The \@ Parameter

The ‘\@’ parameter construct is used to generate unique labels
each time a macro is called. ‘\@’ expands to a character string
of the form underscore (_) followed by a decimal number of the
form nnn. The number increments each time any macro is
called, thus guaranteeing a unique label for each macro
invocation. Note that within a particular macro call all
references to ‘\@’ will return the same string even if other
macros are called from within that macro.

Macro Parameters

6-11

Example 1

inform 0,"Assembling _filename"

68000

Example 2

Inc macro ; increment register
addq.\0 #1,\1
endm
...
Inc d0 ; Expands to addq. #1,d0
Inc.b d1 ; Expands to addq.b #1,d1
Inc.w d0 ; Expands to addq.w #1,d0
Inc.l d7 ; Expands to addq.l #1,d7

SH2

Example 2

Inc macro ; increment register
mov #\1,r0
mov.\0 (r0),r1
add #1,r0
mov.\0 r1,(r0)
endm
...
Inc addr0
Inc.b addr1
Inc.w addr0
Inc.l addr7

addr1 dc.l 0
addr2 dc.b 0
addr3 dc.w 0
addr4 dc.l 0

Macros

6-12

68000

Example 3

BraNz macro ; branch if register not
zero

tst.w \1
bne.\0 \2
endm
...
BraNz d0,Exit
BraNz.s d7,Again

SH2

Example 3

BraNz macro ; branch if register not
zero

mov \1,r0
cmp/eq #0,r0
bf \2
endm
...
BraNz r1,Exit
BraNz.s r7,Again

68000

Example 4

Assuming that no other macros have yet been called, the first
time the DELAY macro is called Loop\@ expands to Loop_000 .
Calling three other macros and calling DELAY again results in
Loop\@ expanding to Loop_004 .

Delay macro
move.w \1,\2

Loop\@ dbra \2,Loop\@
endm
...
Delay #3,d0

Macro Parameters

6-13

SH2

Example 4

Assuming that no other macros have yet been called, the first
time the DELAY macro is called Loop\@ expands to Loop_000 .
Calling three other macros and calling DELAY again results in
Loop\@ expanding to Loop_004 .

Delay macro
move \1,\2
dt \2

Loop\@ bf/s Loop\@
dt \2
endm
...
Delay #3,r0

Macros

6-14

6.3 Short Macros
See also
“Conditiona
l Assembly
(IFxx)
Macros” on
page 6-16.

They contain only a single line of code and do not have a
ENDM directive. Short macros are useful for porting code from
other assemblers where a macro may be required to imitate a
control structure.

6.3.1 MACROS

The MACROS directive is used to define a short macro.

Syntax

macros
MacroLine

where:

MacroLine is a line of code.

Example 1

A macro to implement the IFEQ (if equal) conditional assembly
construct.

ifeq macros
 if \1=0

; Note that short macros don’t have an ENDM
...

 ifeq DebugMode
 ...
 endif

Note

Short macros can contain only part of a conditional assembly
structure. So, unlike other macros, short macros are
expanded inside failed conditions and other assembly flow
constructs in case they define a closing condition statement.

Short Macros

6-15

Example 2

A macro to implement the IFND (if not defined) conditional
assembly construct.

ifnd macros
 if ~def(\1)
...
ifnd Count

Count dc.w 0
endif

Macros

6-16

6.3.2 Conditional Assembly (IFxx) Macros
See also
“Switches”
on page
3-8.

The assembler provides several pre-defined short macros that
enable you to implement additional conditional assembly
structures and these are listed below. These macros are
automatically defined if you invoke the assembler with the (k)
command-line switch. The short macro definitions are listed
below.

Conditional Macro

If Defined IFD macros

if def(\1)

If Not Defined IFND macro
if ~def(\1)

If Zero IFEQ macros
if (\1)=0

If Not Zero IFNE macros
if (\1)<>0

If Greater Than IFGT macros
if (\1)>0

If Less Than IFLT macros
if (\1)<0

If Greater Than or Equals IFGE macros
if (\1)>=0

If Less Than or Equals IFLE macros
if (\1)<=0

If Strings are Equal IFC macros
if strcmp(\1,\2)

If Strings are Not Equal IFNC macros
if ~strcmp(\1,\2)

Table 6-1. Conditional assembly macros.

Advanced Macro Features

6-17

6.4 Advanced Macro Features

6.4.1 Extended Parameters
The assembler provides the ability to pass a list of items
enclosed in curly brackets (‘{’ and ‘}’) to a macro parameter.
The parameter is treated like an EQUS symbol to which a list
has been previously assigned. The NARG symbol can be used
to report how many items have been assigned to the parameter
and SHIFT can be used to manipulate the list in a similar way to
macro parameters. The example below may look complex but
note how all the complexity is hidden away inside the macro
and how neat the main code looks.

Macros

6-18

Example

Black equ 0
Green equ 1
Red equ 2

...
; Macro which takes colours and point lists e.g.
; Black,{0,2,3},Green,{0,3,6,8},Red,{2,4}
; and generates data containing the colour, the
count of
; points and then the point data e.g.
; dc.b Black
; dc.b 3
; dc.b 0,2,3
; dc.b Green
; dc.b 4
; dc.b 0,3,6,8
; dc.b Red
; dc.b 2
; dc.b 2,4

PolyListmacro

polys\@ = narg/2
; Check narg was even

if polys\@*2<>narg
 inform 2,‘Bad parameter list’
 else

; Handle all polygons
 rept polys\@

dc.b \1
points\@ = narg(2)

dc.b points\@
rept points\@
 dc.b \2
 shift 2
endr

shift
shift

 endr

Advanced Macro Features

6-19

Example Continued

endif
endm
...
PolyList

Black,{0,2,3},Green,{0,3,6,8},Red,{2,4}

Macros

6-20

For compatibility with other assemblers it is possible to pass a
list of parameters enclosed in angle brackets (‘<’ and ‘>’)
instead of curly brackets. This requires code to be written
slightly differently to that used to take parameters enclosed in
curly brackets (‘{’ and ‘}’). The example below shows the
differences.

Example

; DefItems macro with parameters enclosed in {}
DefItems macro

rept narg(1)
 dc.b \1,0
 shift 1
endr
endm
...
DefItems

{‘Mon’,‘Tue’,‘Wed’,‘Thu’,‘Fri’}

; DefItems macro with parameters enclosed in <>
DefItems macro
Day equs {\1}

rept narg(Day)
 dc.b \Day,0
 shift Day
endr
endm
...
DefItems

<‘Mon’,‘Tue’,‘Wed’,‘Thu’,‘Fri’>

Advanced Macro Features

6-21

6.4.2 Local Labels in Macros
Local labels and modules can be used in macros. The scope of
local labels defined in modules is not affected by nested
macros. This means that when invoking a macro in a module
you can reference any of the local labels defined in that module
when the macro is expanded. To provide a macro with its own
local labels you can use a module in the macro, use the ‘\@’
parameter or use the LOCAL directive.

LOCAL

Use the LOCAL directive to declare local labels in macros.
Labels declared in this way are defined to be local to the
outermost macro nesting level, which for non-nested macros is
the macro in which the label was defined. The LOCAL
directive does not type the symbols it defines; they can be used
as labels, text equates or as required.

Syntax

local [Label]

where:

Label is any symbol defined by this statement.

68000

Example 1

Delay macro
local Loop
move.w \1,\2

Loop dbra\ 2,Loop
endm

Macros

6-22

SH2

Example 1

Delay macro
local Loop
move.w \1,\2
dt \2

Loop bf/s\ Loop
dt \2
endm

68000

Example 2

Demo macro
local Skip,String1,Gravity
bra Skip

String1 equs ‘\1\\2’; String equate
Gravity equ 10 ; Numeric
equate
Skip ; Label

endm

SH2

Example 2

Demo macro
local Skip,String1,Gravity
bra Skip
nop

String1 equs ‘\1\\2’; String equate
Gravity equ 10 ; Numeric
equate
Skip ; Label

endm

Advanced Macro Features

6-23

6.4.3 PUSHP and POPP
The assembler maintains a global stack which can be
manipulated with the PUSHP and POPP directives. PUSHP
allows you to push some text onto the stack and POPP will pop
the top element of the stack into any string variable. As the
stack is global there are no restrictions to popping the parameter
in the same macro that pushed it. This allows a great deal of
flexibility when writing macros to handle self-referencing data
structures.

Syntax

pushp
...
popp

Example

; DC parameters in reverse order
BackDC macro

local temp
; Push them all

rept narg
 pushp ‘\1’ ; push text contents

of \1
 shift
endr

; now pop and DC them
rept narg
 popp temp ; pop text pushed

earlier
 dc.\0 \temp
endr
endm
...
BackDC.w 1,5,7,8

Macros

6-24

6.4.4 PURGE
The assembler stores macros very efficiently but they can still
consume valuable memory. If amacro is no longer needed it can
be removed using the PURGE directive. This removes the
macro from the symbol table and frees up the memory used to
store it.

A macro is allowed to purge itself, in which case the definition
of the macro is not removed until the macro exits. A macro does
not need to be explicitly purged before it can be redefined.
When the assembler encounters a new definition of an existing
macro, the existing macro is automatically purged.

The assembler also allows macros to redefine themselves. The
new definition will be effective the next time the macro is called
but does not interfere with the expansion of the current call.
However, care should be taken when doing this.

Advanced Macro Features

6-25

Syntax

purge MacroName

where:

MacroName is the name of the macro to be removed from
memory.

Example 1

BigMacro macro
...
endm

; Code that uses BigMacro
BigMacro 1,2,3
...
purge BigMacro

; BigMacro no longer exists so can be redefined

Example 2

Strange macro
inform 0,‘Hello’

Strange macro
inform 0,‘GoodBye’
endm
Strange
endm
...
Strange
Strange

; This will output:
; Hello
; GoodBye
; GoodBye

Macros

6-26

This is the only information this page contains.

Overview

7-1

7 Sections and Groups

7.1 Overview
In simple terms, sections provide a mechanism to structure programs
into logical blocks of code known as sections. Groups provide a way of
organising those sections in memory. Sections therefore encourage
modular programming and groups provide great flexibility in placing
code in memory.

The concept of sections and groups is similar to the Common Object
File Format (COFF) used in Unix based systems. This is a formal
definition for the structure of pure binary files in Unix System V. The
assembler uses its own implementation of the COFF file structure but
the concept of sections as logical blocks of code remains the same.
Groups are a collection of one or more sections; they provide control
over where a group of sections reside in memory.

The assembler provides a range of directives and functions to support
the creation and manipulation of sections and groups. The topics
covered in this section are:

Section Names
• Section Alignments
• Allocating Sections to Groups
• Section Alignments
• Changing Sections
• Section Functions
• Setting Group Starting Addresses
• Setting Group Alignments
• Overlaying Groups
• Writing Groups to File
• Group Functions
• Groups and Linking

Sections and Groups

7-2

7.2 Introduction to Sections and Groups
Program code can be divided into three conceptual categories:
executable machine code, initialised data and uninitialised data.

Executable machine code This category is segregated so it can be
placed in the PROM.

Initialised program data This category represents values that the
program finds when it starts to execute.
It is not necessarily write protected.

Uninitialised program data This category reserves space in
memory, it does not represent any
specific values. It is read and writable.
This is a space-saving feature as there is
no need to represent non-values in the
program file.

Sections structure code into logical blocks, usually corresponding to
the categories described above, although this scheme does not have to
be strictly adhered to. There can be as many executable, initialised
uninitialised sections as necessary.

Groups provide control over placing sections in memory. There are
two basic types of group, initialised and uninitialised.

Initialised Groups Initialised groups contain data or code.
All groups are initialised unless the BSS
group attribute has been set.

Uninitialised Groups Uninitialised groups reserve space in
memory only, they do not take up any
space in the object file. Groups with the
BSS attribute are uninitialised.

Sections of a similar nature are assigned to a group so that they can be
placed together in the target memory. Target systems usually have
different types of memory so using groups helps to use this memory
more efficiently. For example, you might want to keep all your
variables at the beginning of memory so that they can be direct word
addressable. Additionally, space for uninitialised data groups can be
reserved high in the memory map. Figure 7-1 below illustrates the
relationship between an object file and a hypothetical target’s memory
map.

Introduction to Sections and Groups

7-3

Figure 7-1. Partitioning target memory into logical blocks

7.2.1 Section and Group Directives
The assembler provides four directives to manipulate sections and
groups, summarised below.

SECTION This directive: defines a named section
into which code and or data can be
placed; enabled chainging betwen
different sections.

GROUP This directive defines a group and its
various attributes.

PUSHS and POPS These directives enable change
between sections.

Code Group

Data Group

BSS Group

(Initialised)

(Initialised)

(Uninitialised)

RAM

ROM

ROM

Object File Target Memory

Sections and Groups

7-4

7.2.2 Section and Group Functions
The assembler provides eight functions to manipulate sections and
groups, summarised below.

SECT This function takes a symbol as its
parameter and returns the base address
of the section in which the symbol is
defined.

OFFSET This function returns the offset of a
symbol into its section.

ALIGNMENT This function returns the offset from the
section’s alignment type.

OBJBASE(Name) This function returns the logical starting
address of the section or group specified
by Name.

ORGBASE(Name) This function returns the phyyscial
stating base of the section of group
specified by Name.

OBJLIMIT(Name) This function returns the last logical
address containing data from the
section or group specified by Name.

ORGLIMIT(Name) This function returns the last physical
address containing data from the
section of group spcified by Name.

SIZE(Name) This function returns the current size of
the section or group spcified by Name.

Sections

7-5

7.3 Sections

7.3.1 SECTION
The SECTION directive defines (opens for the first time) a new section
or re-opens an existing one. When defining a new section, the name of
the section and, optionally, the group to which it belongs are specified
in the operand field. The SECTION directive can also be used with an
optional size modifier to specify its alignment. A section is closed by
opening another section.

Syntax

section[. Qualifier]
SectionName[, GroupName]
SectionName section[. Qualifier] Attributes

where:

Qualifier is an optional qualifier that can be:

.b Byte data

.w Word data

.l Longword data

The SECTION directive operates as SECTION.W
if no qualifier is specified.

SectionName is the section name. Any valid name can be used.

GroupName is the group name.

Attributes are the group attributes described on page 7-15 See
also “Section Attributes” on page 7-8. for more
information on setting section attributes.

Example

section Vec
dc.l $00FFFFF0 ; SSP
dc.l ProgramReStart ; PC
...

Sections and Groups

7-6

7.3.2 Section Names
Each section must be defined with a section name. Once a section has
been defined it can be re-opened as many times as required. Each time
a section is opened any code following the SECTION directive will be
concatenated to the end of that section.

A section may also be defined or re-opended with a group name; this
allocates the section to a group. It is recommended that a section is
defined with a group name. Note that a section should be allocatd to a
group only once; if the code is to be linked then the allocation of
section fragments to groups should be done at that time.

A section does not have to be defined with a group name. A section can
be allocated to a group at any time by re-opening the section with a
group name but this is not recommended. See also “Allocating
Sections to Groups” on page 7-8.

Example

section Tables,BssGroup
; Tables section defined and allocated to
; BssGroup group

section Data,LowGroup
; Data section defined and allocated to LowGroup group

section Tables
; Tables section re-opened and concatonated to BssGroup
; group

Note The assembler provides great flexibility in using sections and
groups to organise your code. However this means that you should
be very careful as minor differences in syntax can have a large
effect on how the code is structured and placed in memory. The
following paragraphs describe what happens under different uses of
the SECTION directive.

Sections

7-7

7.3.3 Section Alignments
Sections can be opened with an optional alignment. If a section is
defined without an alignment the assembler uses the default alignment
for that processor. See also “SECTION Syntax”. If no alignment is
specified the assembler treats the section as long aligned i.e. the same
as opening the section with SECTION.L.

If a section is defined with a particular alignment and later re-opened
with a different alignment then the section is treated as being aligned to
the largest size. (The alignment of a group is taken to be the alignment
of the largest section within that group.)

If a section is opened with a specified alignment then subsequent code
or data will be aligned accordingly. If a section is re-opened without a
specified alignment then subsequent code or data is placed in that
section immediately after any previously emitted bytes.

Example

section Data,LowGroup
;Data is word aligned

section.b Table1,BssGroup
;Table1 is byte aligned and so BssGroup is byte aligned

section.w Table2,BssGroup
;Table2 is word aligned and so now is BssGroup

section.l Table1,BssGroup
;Table1 is now long and so now is BssGroup

Sections and Groups

7-8

7.3.4 Allocating Sections to Groups
A section is usually defined with a specified section name and group;
this allocates the section to a group. If the code is to be linked then this
should be the only time the section is opened with a group name. If the
code is not going to be linked then a section should specify a group
name each time it is re-opened.

Allocating a section to a group causes it to be appended immediately
after the end of the previous section in that group. If the section name
has been previously defined for that group then the code will be
concatenated with that section. (For this reason it is recommended that
a section is assigned a group the first time it is defined.) Sections
opened without specifying a group will be placed in a default unnamed
group that precedes all other groups. The section can subsequently be
allocated to a group at a later time. If the section remains unallocated
and the code is not going to be linked then the unallocated sections
remain in the unnamed group; this unnamed group will be output first
when asembling.

Example

BssGroup group bss
LowGroup group word

section Tables,BssGroup
;Tables allocated to BssGroup

section Data,LowGroup
;Data allocated to LowGroup

section Tables,BssGroup
;Code concatenated with Tables in BssGroup

7.3.5 Section Attributes
It is sometimes convenient to write a project where each group contains
only one section. The assembler provides a short-hand way of defining
a group with a single section by enabling group attributes to be set
directly, dispensing with the GROUP directive. This feature reduces
the effort required to implement simple groups and can be used
whether or not you are linking.

Sections

7-9

Example

Code section word,org($8000)
...

Note Defining section attributes in this way uses an alternative
SECTION syntax. First, the section name is now defined in the
label field and second, section attributes are specified in the
operand field with multiple attributes separated by commas.

Sections and Groups

7-10

7.3.6 Changing Sections
The PUSHS and POPS directives are used to change sections, working
on a stack basis. The PUSHS directive saves the current section; the
POPS directive restores the section previously saved by the last
PUSHS. The PUSHS and POPS directives do not have to be balanced
i.e there is no limit to the number of PUSHS’s that may be outstanding.

Syntax

pushs
...
pops

Example 1

section Data
LevelText dc.b 0,11,19

...
pushs

; Push current section (Data) onto stack

section FastRAM
; Open
PicTexture ds.w 1
Done1String ds.w 100
Done1String ds.w 100

pops
; Pop FastRAM section from stack and return to
; previously pushed section (Data)

; This code is in section Data:
dc.b 'Aggressive',0
dc.b 'Neutral',0
dc.b 'Passive',0
even
pops

Sections

7-11

Example 2

The MARKPLACE macro puts the current PC into a separate section.

MarkPlace macro
local Temp

Temp equ *
pushs
section MarkSection
dc.l Temp
pops
endm

Sections and Groups

7-12

7.3.7 Section Functions

SECT and OFFSET

The SECT function returns the base address of the section in which its
parameter is defined. This cannot be evaluated until link time when the
sections are assigned memory addresses.

The OFFSET function returns the offset of a symbol in its section. This
is again evaluated at link time so that
SECT(Symbol) + OFFSET(Symbol) = Symbol.

A section is often split into several distinct parts spread throughout
your source code. Each part is known as a section Fragment. In the
example below Sect1 is split into two fragments, the first containing
$100 bytes of code and the second containing $150 bytes. To
determine the offset of a symbol into a fragment place a label at the
beginning of the fragment and then perform the subtraction manually.
In the example below the offset into the fragment of Label1 is given
by Label1-Marker=$120 .

Example

org $10000
section Sect1

; $100 bytes of code here
;

section Sect2
...
section Sect1

Marker
; $120 bytes of code here.
;
Label1 offset(Label1)
; $30 bytes of code here
;

section Main
sect(Sect1)
sect(Sect2)
sect(Label1)
...
end

Sections

7-13

At link time offset(Label1) returns $100+$120=$220,
sect(Sect1) returns $10000, sect(Sect2) returns
$10000+$100+$120+$30=$10250 and sect(Label1) returns
$10000.

ALIGNMENT

The ALIGNMENT function returns the offset of its argument from the
section’s alignment type. The alignment type can be any power of two
where :

20 means Byte aligned
21 means Word aligned
22 means Long aligned
23 means Double Long aligned
... etc.

In a byte aligned section ALIGNMENT(X) will always return 0, in a
word aligned section it will return 0 or 1, and in a long word aligned
section 0..3.

Example

if alignment(*)&1 ;If PC is odd pad with
 dc.b 0 ;zero to even boundary

endif

OBJBASE(SectionName)

The OBJBASE function returns the logical starting address of the
section specified by SectionName, evaluated at link time.

ORGBASE(SectionName)

The ORGBASE function returns the physical starting address of the
section specified by SectionName, evaluated at link time.

Sections and Groups

7-14

OBJLIMIT(SectionName)

The OBJLIMIT function returns the last logical address containing
data from the section specified by SectionName.

ORGLIMIT(SectionName)

The ORGLIMIT function returns the last physical address containing
data from the section specified by SectionName.

SIZE(SectionName)

The SIZE function returns the current size of the section specified by
SectionName. It is evaluated immediately and so reflects the current
section size not the final size.

LINKEDSIZE(SectionName)

The LINKEDSIZE function returns the final link time size of the
section specied by SectionName.

Groups

7-15

7.4 Groups

7.4.1 GROUP
The GROUP directive is used to allocate several sections contiguously
in memory. Group attributes are set using the GROUP directive in your
source code. The attributes are specified in the operand field with
multiple attributes separated by commas.

Syntax

GroupName group Attributes

where:

GroupName is a label defined by this statement. It must not
be the name of an existing section or group
name.

Attributes are one or more of the following:

org [Address] specifies the address in memory, Address, at
which to place the group. If no address is
specified then the group will be placed in
memory after any previously defined group.

obj [Expr] allows a group to use assembly with offset i.e.
group does not run at the normal contiguous
address but at the address specified by Expr .

size Size specifies the maximum size, Size, of a group.
Enabling the PAD attribute forces the
assembler to output the group padded to the
specified size. The assembler will generate an
error if the group is larger than the size
specified by Size.

bss defines a uninitialised data group.

Sections and Groups

7-16

file Filename is used to write the contents of a group to a
binary file called Filename. All subsequent
groups will be written to the same file until a
different file is specified.

over is used to overlay groups i.e. causes specified
groups to start at same address in memory.

pad Value pads the group to the declared size with the
byte value defined by the evaluable expression
Value. This is useful in PROM burning where
instead of burning the 1’s of the unused space
down to zero, the unused space is padded with
FF’s so the burn takes less time. Settin gthe
PAD attribute is effective only if the size
attribute has been specified.

scatter Start,Length Sections and groups normally follow in the
[,Start,Length]... order they are encountered. This attribute

defines a group that is not contiguous in
memory but where each group fragment is
allocated a starting address Start, and an
amount of memory given by Length. Multiple
parameter pairs are separated by commas.
Group ordering is as before but sections within
a group are reordered to achieve an optimal
packing.

7.4.2 Group Starting Address
There are two ways to set the starting address of a group, which can be
mixed freely. The first method uses the ORG directive to set the start
address of the program. Groups are then loaded contiguously into
memory starting from the address specified in the ORG directive. The
second method provides individual starting addresses for groups. This
is done by setting the ORG attribute for each group with the required
starting address. ORG cannot be used inside a section but if sections
and groups are not used then the ORG directive can be used anywhere.

Groups are normally placed in memory in the order in which they are
encountered in a program. Groups that do not have an explicit starting
address are placed at the end of the previously encountered group.
Sections within each group are placed in memory in the order in which
they are specified. When linking, section fragments from different
source files are concatenated in the order in which the source files are
specified.

Groups

7-17

Example 1

This example uses a single ORG statement to set the starting address
for the first group with subsequent groups loaded immediately after the
preceding one.

org $1000 ;Program start address
...

Code group ;Loaded at $1000
Data group ;Loaded immediately

... ;after the end of Code

Example 2

This example sets individual group starting addresses.

Code group org($1000) ;Loaded at $1000
Data group org($2000) ;Loaded at $2000

...

Example 3

org $1000
Code1 group ;Loaded at $1000
Code2 group ;Loaded after Code1
Data1 group org $2000 ;Loaded at $2000
Data2 group ;Loaded after Data2

...

Sections and Groups

7-18

7.4.3 Setting Group Alignments
The alignment of a group is determined by the widest alignment of
sections within that group. For example, if a group contains a byte
aligned section and a word aligned section then the group will be word
aligned. Similarly, the alignment of a section is determined by the
widest alignment of its component fragments.

Example

BssGroup group

section Table1,BssGroup
;Table1 is word aligned and so BssGroup is word aligned

section.l Table1,BssGroup
;Table1 is now long so BssGroup is now long

7.4.4 Writing Groups to File
The assembler allows you to write groups to separate pure binary files
using the FILE attribute; all groups declared after a group with a file
attribute will be written to that file until a new file is specified. The
FILE attribute can be used in condjunction with the OVER attribute to
put overlays into separate files with all the overlays having the same
start address.

Example

Code group
Data group
Overlay1a group org $8000,file('overlay1.bin ')
Overlay1b group ; Also goes into overlay1.bin
Overlay2 group org $8000,file('overlay2.bin ')

The output is in pure binary format and no default extension is added to
file names.

Groups

7-19

7.4.5 Overlaying Groups
The OVER attribute enables you overlay groups i.e. to have several
groups starting at the same address. A group specified as an overlay
has the same starting address as the previous group. Enough space will
be left for the largest group.

Example

Overlay1 group
Overlay2 group over
Overlay3 group over

Sections and Groups

7-20

7.4.6 Group Functions

OBJBASE(GroupName)

See also
“Group

Functions” on
page 7-20.

The OBJBASE function returns the logical starting address of the
group specified by GroupName, evaluated at link time.

ORGBASE(GroupName)

See also
“Group

Functions” on
page 7-20.

The ORGBASE function returns the physical starting address of the
group specified by GroupName, evaluated at link time.

OBJLIMIT(GroupName)

The OBJLIMIT function returns the last logical address containing
data from the group specified by GroupName.

ORGLIMIT(GroupName)

The ORGLIMIT function returns the last physical address containing
data from the group specified by GroupName.

SIZE(GroupName

The SIZE function returns the current size of the group specified by
GroupName. It is evaluated immediately and so reflects the current
group size not the final size.

LINKEDSIZE(GroupName)

The LINKEDSIZE function returns the final link time size of the group
specied by GroupName.

5The Debugger
About the Debugger

Running the Debugger

The Debugger Interface

The Main Window

Code Windows

The Registers Window

The Memory Window

The Watch Window

The Program Window

The Breakpoints Window

The Log Window

The File Viewer Window

The Local Vars Window

Breakpoints

Expressions

Expression Formatting

4

About the Debugger

8-1

8 The Debugger

8.1 About the Debugger
The debugger enables the target machine to be remotely
debugged via the SCSI hardware.

Access to symbols and a powerful expression evaluator (which
includes expression formatting) enable full symbolic debugging
to be performed on the target machine.

You can source level debug C, C++, assembler and mixed
language projects and use the Mixed code window to view both
the original source code and the actual code the processor is
running in a single window.

Concurrent debugging of multiple processors can be performed
on a single screen enabling code for one processor to be
monitored whilst simultaneously monitoring the state and
memory contents of another.

The Debugger

8-2

8.2 Running the Debugger
This section describes how to invoke the debugger from the
command-line, including the switches used to control COFF file
downloading, saving and restoring previous debugging sessions
and some examples on how to invoke the debugger.

8.2.1 Command-line Syntax
The command-line format consists of the debugger executable
name optionally followed by two switches controlling the
session and object files used by the debugger. The switches
must be separated by white space but no white space is allowed
within the argument of a switch. The syntax is:

snbugsat Switches

Running the Debugger

8-3

Files Used by the Debugger

The files used by the debugger and their default extensions are
given in Table 8-1 below. Note that session files can take any
extension and source files can take any extension specified
during the installation process.

Filename Extension Description

SessionFile INI This file contains the
information needed to
restore a previous debugging
session. If no file is
specified the debugger will
look for the default file
SNBUGSAT.INI.

ObjectFile COF The object file. This
contains binary and
optionally, source level
debug and symbol table
information (referred to as
debug info from here on),
produced by the assembler.

Table 8-1. Files used by the debugger.

The Debugger

8-4

Command-line Switches

The debugger has eight optional command-line switches,
described in Table 8-1 below.

.

Switch Description
[- |/]? Command-line help.
[-|/]a Use default colour scheme.

This switch causes the
debugger to ignore the colour
settings in the INI and CFG
files.

[- |/]b Use Borderless Edit Controls.
This switch causes the
debugger to use single line
buttons and borderless edit
controls.

[- |/]i= SessionFile Use Project Info. This switch
invokes the debugger using the
session save file specified by
SessionFile. The session file
contains information on how
to connect to targets, the object
files in use for each target,
update rates, breakpoints,
watch expressions, log
expressions and window
positions and displays. If no
memory ranges are specified
the debugger will look for
them in SNBUG.CFG.

Running the Debugger

8-5

[- |/]m Use Block Mouse Cursor. This
switch forces the debugger to
use the block (non-graphics)
cursor when running under
DOS or in a DOS box under
Windows. See also the m
swtich.

[- |/]s Use Shadowed Window
Environment.

[- |/]t #[b][n]: [ObjectFile] Specify Target and Object
File. This switch specifies the
target and the object file to
load. The target is identified
by its processor ID # (0-7)
where 1=SH2 Master; 2=SH2
Slave. The object file to load is
specified by ObjectFile.
Using this switch to specify an
object file for a target will
override the setting in the
session file. Options are
downloading the binary from
the object file (b) and
suppressing debug information
(n). Note that using the n
option without also using the b
option will have no effect as
no code or symbols are
required.

Switch Description

The Debugger

8-6

Table 8-1. Debugger command-line switches.

Example 1

This example invokes the debugger and restores the debugging
session according to the information contained in the session
file INITFILE.INI.

snbugsat -i=initfile

Example 2

This example invokes the debugger and restores the debugging
session according to the default session file SNBUGSAT.INI
(no i switch). The binary (...b...) from the file TEST.COF
will be downloaded to target 7 (-t7...:test) but no symbolic
information is loaded (...n...).

snbugsat /t7bn:test

[- |/]vVideoSetting Configure Video Setting. This
switch configures the
debugger’s video display
according the the setting
specified by VideoSetting.
VideoSetting can be one of the
following:
[b|B] - BIOS screen wites.
[c |C] - Colour1.
[d|D] - Direct screen writes1.
[g|G] - Direct screen writes,
no CGA snow2.
[m|M] - Monochrome3.

1 Default.
2 Default on CGA cards.
3 Default on monochrome
cards.

Switch Description

Running the Debugger

8-7

Example 3

The following example illustrates how not to invoke the
debugger as using the n option without also using the b option
will do nothing because no code or symbols are required.

snbugsat -t7n:test

The Debugger

8-8

8.2.2 Session Files
The debugger gets its startup state from a session file (.INI) that
contains information used to configure a debugging session;
connected targets, menu options, colour schemes, window
layout, cursor positions and memory ranges. Optionally, project
specific settings such as defined breakpoints, watch expressions
and the object file in use by each target can also be saved.

Project Infomation

Invoking the debugger using a session file containing project
specific information restores project items, such as breakpoints,
if present. If the ‘do_bin ’ entry in the project section of the
session file is non-zero the COFF file binary is downloaded to
the target. If the ‘do_syms ’ entry in the project section of the
session file is non-zero any available symbolic debug info will
be loaded automatically. Note that the ‘do_bin ’ and ‘do_syms ’
entries are normally set automatically when a session file is
saved. Note also that command-line options override those
contained in the session file. An unlimited number of session
files can be saved and loaded at any time during a debugging
session providing custom configurations for different
debugging requirements.

Default Settings

The debugger will search for session files first in the current
directory then in the debugger executable directory. If a session
file is found the debugger will use the settings it contains.

If a session file cannot be found or if some settings, such as
memory ranges, are not specified in the session file the
debugger will use the defaults in the template session file
SNBUG.CFG. This file must be in the same directory as the
debugger and should not be modified. SNBUG.CFG also
contains window default parameters such as size, colour and
update rate. The debugger always uses these parameter values
when a new window is opened. To change the parameter values,

Running the Debugger

8-9

select a window and configure it as desired then choose Save
as Default from the Display menu to save the new parameter
values in SNBUG.CFG. The new values will be used each time
a new window of the same type is opened.

Editing Session Files

Information in session files can only be changed using a text
editor. Be careful to retain the format shown in this manual so
as not to cause unexpected behaviour in the debugger.

Memory Ranges

The debugger uses information about valid memory ranges to
prevent it accessing areas that would cause an address error.
Default read, readwrite and write memory areas for various
targets are contained in the SNBUG.CFG file. The format of the
memory range section found in a .INI file is shown below. The
Read, Write and ReadWrite specifers denote valid read, write
and readwrite ranges respecitvely and there can be as many
ranges as required. The Memory specifer allows additional
memory ranges to be specified at other locations within the
.CFG file or in another text file. Any memory ranges following
the memory specifer are added to those found in the current .INI
file.

The Debugger

8-10

The Memory Range Format

[memory_ TargetNumber]
Read=StartAddress, EndAddress, [Size] , [Expression]
Write= StartAddress, EndAddress, [Size] , [Expression]
ReadWrite= StartAddress, EndAddress, [Size] , [Expresssion]
Memory=[Filename :] Tag

where:

TargetNumber is the target SCSI device number.

StartAddress is the start address of a valid memory range.

EndAddress is the end addresses of valid memory range.

Size is the access method specifier and can be
either byte , word , triple or long . The default
is byte access.

Expression is any valid expression and is used to allocate
memory shared between multiple processors.

Filename is an optional file containing memory range
information not already specified in
SNBUG.CFG.

Tag is the name of the section searched for in
SNBUG.CFG or Filename if specified.

Example

This example defines memory ranges for target 1. The
expression sets the read range only if bit $80 is set in byte
C2BF.

[memory_1]
Read=0x00001000,0x00007FFF,[C2BF]&$80
Write=0x00008000,0x0000BFFF
ReadWrite=0x0000C000,0x0000FFFF

Running the Debugger

8-11

Window Attributes

SNBUG.CFG has one or more super-sections that contain
information about window attributes. To create a processor
specific super-section for a window type choose Save as
Default from the Display menu. There is a default super-
section called “Default_Windows” that contains non-processor
specific infomation that is used if no processor specific
information is available. Each processor type can optionally
have a super-section that contains default position, size and
colour attributes for each window. The format of a processor
specific super-section is shown below.

[[ProcessorID_Windows]]
[WindowType]
Entries
...
[WindowType]
Entries
...
[[]]

where:

ProcessorID is the name used to identify the processor.

WindowType is one of: COD_WIND, DIS_WIND,
SRC_WIND, REG_WIND, MEM_WIND,
WCH_WIND, LOG_WIND or FIL_WIND.

The Debugger

8-12

Example

The following example shows a super section for the SH2 Main
processor that defines the size and position for the Disassembly
window.

[[SAT_SH2_MAIN_Windows]]
[dis_wind]
Row=10
Column=10
Width=35
Depth=12
[Reg_Wind]
...
[[]]

The Debugger Interface

8-13

8.3 The Debugger Interface
The debugger features a multiple, overlapping window
interface enabling several areas of memory, variables or
expressions to be examined at once. Each window type has its
own local menu supported by comprehensive mouse and
keyboard access to menu functions and keyboard shortcuts to
commonly used functions. Multiple configurations of window
layouts and associated debugger states can be saved and
restored at any time.

8.3.1 Selecting Targets
Because the debugger can support multiple targets a target must
first be selected before any debugging can be performed on it.
Selecting a target is often the first action performed after
invoking the debugger and if working with multiple processor
systems you will often want to switch between targets.

The Current Target

The currently selected target is highlighted in the Main window
and any other windows associated with the target will be
brought to the front. The selected target becomes the
foreground target and all debugging actions apply to this
target.There are three ways to select a target (and initialise it if
it has not yet been connected).

Selecting a Target

In any window use Shift+Target Number to select a target.
This also initialises the target if it has not yet been connected.

In the Main window (described later) choose Target|Select
from the menu to display the Select Target dialog box. Select
the radio button corresponding to the target you wish to select
and click OK. This also initialises the target if it has not yet been
connected.

The Debugger

8-14

In the Main window click the left mouse button on the target’s
status line to select a previously initialised target.

Discarding a Target

There two ways to discard a target. Choose Discard from the
Target menu in the Main window or use Ctrl+Alt+Target
Number.

8.3.2 Working with Windows
The multiple windowing interface allows as many windows of
each type to be open at any one time as required, limited only
by the amount of memory available (with the exception of
Register windows which are limited to 1 per target). Any active
debugger window can be moved or resized and any value in the
Memory and Register windows can be edited.

Opening Windows

To open a window select a target as discussed above then
choose the type of window required from the Window menu
(Ctrl+N). Each debugging window displays the target number
to which it belongs, the window type and the window number
for that target in the form:

TargetNumber:Processor_ID-WindowName-WindowNumber

Example

1:SAT_SH2_MAIN-Mem{3}

Resizing Windows

Using the Mouse

To resize both the depth and width of a window click and hold
the left mouse button on the bottom right corner. Drag the
corner to the desired position and release the mouse button.

The Debugger Interface

8-15

Similarly, to resize the width or depth only, drag and release the
right or bottom size handle respectively. Note that this feature is
disabled when a scroll bar is visible.

Using the Keyboard

To resize an active window press Alt+Space to display the
system menu and choose Size. Use the arrow keys to resize the
window and press Enter when done.

Moving Windows

Using the Mouse

Move windows by placing the pointer on the title bar and
clicking and holding down the left mouse button. Drag the
window to its new position and release the mouse button.

Using the Keyboard

To move an active window press Alt+Space to display the
system menu and choose Move. Use the arrow keys to move the
window and press Enter when done.

Selecting Windows

To cycle through the open windows for the currently selected
target use Ctrl+←,→. Each window for a target has its own
number, starting from 0. Any of the first 10 windows opened
for the current target can be selected using Alt+0..9.

The Debugger

8-16

8.4 The Main Window
This is the main debugger control window and displays a list of
currently connected targets and their status as shown in Figure
8-2 below. The menus provide access to general debugging
tasks such as loading files, saving sessions, selecting targets,
running code and opening windows. Menu selections apply to
the currently selected target, highlighted in the target list.

 Figure 8-2. The Main debugger window.

Main Window Menus

The Main window has seven menus; File, Session, Target,
Execution, Breakpoints, Windows and Help. The Help menu
contains one item, the About box, accessed from any window
using Ctrl+V. This displays the version number and compilation
date and time which may be asked for during a technical
support call. The remaining six menus are now described in
turn.

[�] Minimal Performance Hit Mode - Ctrl+U to Cancel [�][�]
 File Session Target Execution Breakpoints Windows Help
” [Target] ---[CPU]---- ----[ID]---- -[Status]- [Rate] ------[Error]------ �
” - 1: SH2 SAT_SH2_MAIN RUNNING 9 ------------------- þ
” - 2: SH2 SAT_SH2_SUB RUN ERROR 1 Trap32 Instr †
” †
” †
” �
¨˝˝˝˜Ù

The Main Window

8-17

8.4.1 File Menu
The File menu shown below controls file loading and exiting
the debugger.

Loading Debug Info

Load COFF with Debug Info (Shift+Ctrl+C)

Selecting this command displays a dialog box requesting the
name of the object file that will be used to send the binary code
to the currently selected target. Any debugging information
included in the file by the assembler will be loaded by the
debugger. Line number information is discarded if multiple
lines are reported for the same address (the last line number in
the list is loaded). The target will be stopped after the COFF has
been loaded.

Load Debug Info Only (Ctrl+C)

Selecting this command performs the same action as Load
Binary & Debug Info except that it does not send any binary code
to the target. The binary is assumed to be have been previously
sent or already present i.e. it was assembled to the target. The
target will not be stopped after the debug info has been loaded.

File

Load COFF with Debug Info... Shift+Ctrl+C
Load Debug Info Only... Ctrl+C
Reload Processor’s Last COFF
Reload All COFFs in Use Ctrl+Alt+C
Send Binary... Shift+S
Get Binary... Shift+G
Prompt and Exit F3
Save and Exit... Ctrl+X
Quit (No Save) Ctrl+Q

The Debugger

8-18

Reloading COFFs

Reload Procesor’s Last COFF

Selecting this command reloads the last loaded COFF file for
the current target processor.

Reload All COFFs in Use

Selecting this command reloads all COFF files currently in use
for all target processors.

Binary Transfers

Send Binary (Shift+S)

Selecting this command displays the Binary Transfer dialog box
requesting the name of the file to send, the start address and the
length of file. The length and end address are set automatically
from the specified file. The default start address is the beginning
of the file and the default length is the entire file. If the value for
either the start address, end address or length is changed the
other values will be adjusted automatically.

Get Binary (Shift+G)

Selecting this command displays the Binary Transfer dialog box
requesting the name of the file to get, the start address and the
length of file. The length and end address are set automatically
from the specified file. The default start address is the beginning
of the file and the default length is the entire file. If the value for
either the start address, end address or length is changed the
other values will be adjusted automatically.

The Main Window

8-19

Saving and Exiting

Prompt and Exit (F3)

Selecting this command displays a prompt requesting the name
of the session file to save; the default file is the last saved or
loaded session file or SNBUGSAT.INI if no custom session
files have yet been saved. To enable the project to be restored to
its current state, select the Save Project Information tick box.
This saves: the COFF information in use; window positions and
displays; and any breakpoints, watch expressions, log
expressions that have been set.

Save and Exit (Ctrl+X)

Selecting this command exits the debugger and saves the
session information to the default session file SNBUGSAT.INI,
not the current (last saved or loaded) .INI file. Project
information will be automtically saved if:

• it was restored from a session file (either SNBUGSAT.INI
or a custom INI file)

• the Project Information box was ticked during a previous
session save (using Ctrl+F3).

• a COFF was loaded or a breakpoint set during the current
session.

Quit (no Save) (Ctrl+Q)

Selecting this meu item quits the debugger without any prompts
or saving any session information.

The Debugger

8-20

8.4.2 Session Menu
The Session menu shown below enables sessions to be saved
and loaded at any point during a debugging session.

Session

Loading Session Files

Load (F4)

Selecting this command loads a new session file, discards the
current setup without saving it and restores the debugger
settings from the file chosen in the Session Save Selector dialog
box. If the session file was saved with Save Project Information
ticked then the binary file, breakpoints, log and watch
expressions and debug info will also be restored if present

Reloading A Previous Session

Reload Last (Ctrl+F4)

Selecting this command starts a new session using the last saved
or loaded session file.

Saving Session Files

Save (Ctrl+F3)

Selecting this comand saves the debugging session in its current
state to a specified file, optionally including project
information. The default file is the last saved or loaded session
file or SNBUGSAT.INI if no session file has yet been saved or
loaded.

Session

Load... F4
Save... Ctrl+F3
Reload Last Ctrl+F4
Minimal Performance Hit Mode Ctrl+U

The Main Window

8-21

Minimal Performance Hit Mode

Selecting this command reduces the debugger’s influence on
code running on the Saturn by stopping the debugger
communicating with a processor whilst the monitored processor
is executing code. Conditional breakpoints behave as normal.
The Debugger uses Minimal Performance Hit Mode by default.

The Debugger

8-22

8.4.3 Target Menu
The Target menu shown below controls target connection,
update rates and monitoring.

Selecting Targets

Select (Shift+0..7)

Selecting this command displays the Target Select dialog box.
This dialog box has eight radio buttons corresponding to
possible target device numbers.

The default radio button is the current target. Buttons 1,2,4
select the Master SH2, Slave SH2 and 68000 targets
respectively. Selecting any other button causes all three targets
to be connected. Selecting a target will cause any windows
associated with it to be brought to the front; the active window
will be the one last worked in. Selecting a non-existent target
will create it and add it to the Main window status display.
Selecting a target can also be performed by clicking the left
mouse button on the target’s information line in the Main
window or by pressing Shift+Target Number from anywhere
within the debugger.

Discarding Targets

Discard (Ctrl+Alt+0..7)

Selecting this command from the menu discards the current
target. Selecting this command using the keyboard shortcut
discards the specified target. Discarding a target will close all
windows for the target and disconnect it.

Target

Select... Shift+0..7
Discard... Ctrll+Alt+0..7
Update Rate... Shift+U
Monitoring... Ctrl+M
Reset Ctrl+Shift+R

The Main Window

8-23

Setting Update Rates

Update Rate (Shift+U)

Selecting this command displays the Update Rate dialog box.
The Update Rate dialog box sets the foreground and
background update rate for the currently selected target.

The Foreground update rate is the rate at which the target is
updated when it is the currently selected target. Similarly, the
Background rate is the rate at which the target is updated when
it is not the currently selected target. In the Main window, the
status line for each target displays the current update rate or an
X if Continuous update is disabled.

If the Continuous check box is enabled the target will be
continuously updated. Note that in this case the foreground and
background update rates refer to the minimum update rate for
the target. If a continuously refreshing window has a higher
refresh rate and requires data from the target then the target will
be updated at this higher rate (see individual window
descriptions for setting refresh rates). If the Continuous check
box is not enabled the target update rate will be the highest
refresh rates of its windows. If no windows are open for this
target it will not be updated

Toggle Continuous Update Rate Ctrl+U

If the current target is running, selecting this command toggles
continuous update on and off. If the current traget is not
running, this command toggles Minimal Performance Hit Mode
on and off.

Note The behaviour of conditional breakpoints may be affected if
slow update rates are specified for a target or Continuous
update is disabled. This is because there will be significant
ybetween breakpoints halting the execution of code on the
target and the debugger detecting and processing them.

The Debugger

8-24

Monitoring (Selected Target) (Ctrl+M)

Selecting this command toggles monitoring of the selected
target on and off. Turning monitoring off disables the
connection, or ability to connect to, a target. No target updating
or window refreshing takes place and no mouse clicks or
keyboard presses are processed. Connection to the target cannot
take place without first turning monitoring back on. Turning off
monitoring is the equivalent of disabling continuous update for
a particular target combined with ignoring requests for a forced
update such as looking at a memory range. The Monitoring
command can also be used to disable continuous attempts to
reconnect to a target after a SCSI error without the need to
discard the target.

Monitoring (All Targets) (Ctrl+U)

Selecting this command performs a similar action to Ctrl+M but
toggles monitoring of all targets on and off. Unlike Ctrl+M this
command allows keyboard presses and and tracing to force a
window refresh. Use Ctrl+U monitor toggling to make the
debugging session user triggered.

The Main Window

8-25

8.4.4 Execution Menu
See also

“Code
Windows”

on page
8-30.

The Execution menu shown below provides a subset of the Execution
menu found in Code (Source, Disassembly and Mixed windows).

Running Code

Run from PC (F9)

Selecting this command starts the target executing code from
the current position of the PC.

Run to Address (Shift+F9)

Selecting this command executes the current program until it
reaches a specified address or executes a specified source file
until it reaches a given line number.

Run All Targets (Ctrl+F9)

Selecting this command starts all targets executing code from
the current position of the PC. This command is equivalent to
selecting Run from PC for all targets.

Halt All Targets

Selecting this command stops code executing on all targets.
This command is equivalent to selecting Stop for all targets.

Execution

Run from PC F9
Run to Address... Shift+F9
Run All Targets Ctrl+F9
Stop All Targets
Single Step F7
Step Into Shift+F7
Step Over F8
Unstep Ctrl+F7
Halt Esc
Halt (DMA & Interrupts) Shift+Esc
Save Registers Ctrl+S
Retrieve Registers Ctrl+R

The Debugger

8-26

Stepping Code

Single Step (F7)

In disassembled code, selecting this command causes the target
to execute the instruction at the PC (using the current register
values) and then stop.

In source code, selecting this command causes the target to
execute the instruction at the PC (using the current register
values). The target will stop when all low level assembly
instructions generated by the single source instruction have
been executed.

Step Into (Shift+F9)

In disassembled code, selecting this command causes the target
to execute the instruction at the PC (using the current register
values) and then stop.

In source code, selecting this command causes the target to
execute the instruction at the PC (using the current register
values) and then stop at each individually generated assembler
instruction.

Step Over (F8)

In disassembled code, selecting this command causes the target
to execute the instruction at the PC (using the current register
values) and then stop.

In source code, selecting this command causes the target to
execute the instruction at the PC (using the current register
values) and then stop when the source file reference has
changed.

Unstep (Ctrl+F7)

Selecting this command causes the target to untrace the action
of the previous individually single stepped instruction.

The Main Window

8-27

Halting Code

Halt (Esc)

Selecting this command causes the target to stop executing code
as soon as possible and leaves the PC at the start of the next
instruction that would have been executed.

Halt (DMA & Interrupts) (Shift+Esc)

Selecting this command causes the target to stop in the same
way as Stop but also disables all DMA accesses and stops all
interrupts so that the target is forced into a safe state.

Reseting the Processor

Reset Processor (Shift+Ctrl+R)

Selecting this command causes the currently selected target to
perform a processor reset.

Saving and Retrieving Registers

Save Registers (Ctrl+S)

Selecting this command saves the current contents of the target
registers.

Retrieve Registers (Ctrl+R)

Selecting this command restores the previously saved register
contents.

The Debugger

8-28

8.4.5 Breakpoint Menu
The Breakpoint menu provides the ability to remove all
currently set breakpoints. There is one command on the
Breakpoint menu: Remove All; this removes all currently set
breakpoints for a target.

Breakpoints

Remove All

The Main Window

8-29

8.4.6 Windows Menu
The Windows menu creates a new window for a target. There
are nine available window types: Mixed; Disassembly; Source;
Registers; Memory; Watch; Program; Log; and File Viewer.

A target can have an unlimited number and mixture of windows
with the restriction that only one Register and Log window is
permitted per target. Mixed, Disassembly and Source windows
are discussed together in “Code Windows” on page 8-30.

Windows

Mixed
Disassembly
Source
Registers
Memory
Watch
Program
Breakpoints
Log
File Viewer
Local Vars

The Debugger

8-30

8.5 Code Windows

Types of Code Windows

The debugger supports three types of Code window: Mixed;
Disassembly; and Source.The Disassembly window displays
code in disassembled format and the Source window displays
the original source code. Disassembled code can optionally
show symbols in place of hexadecimal values to make the code
more readable. The Mixed window combines the Source and
Disassembly windows: source code is displayed in the upper
region and the corresponding disassembled code in the lower
region.

Running and Tracing Code

See also
“Breakpoint
s” on page

8-57.
See also
“Tracing”
on page

8-65.

All Code windows provide the facility to run, trace and set
breakpoints. For example, in a Mixed window to trace code at
source level: select the source region of a mixed window. The
assembly language statements corresponding to each executed
source statement can be viewed in the disassembly region
below. Alternatively, in the same window select the
disassembly region to trace at the instruction level and view the
source statement that generated each instruction or group of
instructions.

Code Windows

8-31

8.5.1 Mixed Window
The Mixed window is a combination of the Source and
Disassembly windows and so supports the features of both
window types.

The Mixed Window Regions

The Mixed window has two regions. The upper region displays
source code (if debug info is loaded) and the corresponding
disassembly of the target code in the lower region. To start the
display at a given line double click on the line in the left hand
side of the display.

Click the left mouse button in the relevant region or use Space
to toggle the focus between the two regions.

Marked Instructions

The left-hand column of the Disassembly region is used to
display markers to identify slot instructions and the location of
the target’s PC.

The PC Marker

If the target’s PC is at one of the instructions displayed in the
disassembly region, the instruction is marked with a ‘<*>’, in
the left hand coloumn. known as the PC Marker. The PC
marker is yellow for valid instructions and red for invalid
instructions. The PC marker is also displayed in red when the
disassembly region is the inactive region of the Mixed window.
If the PC is currently on a slot instruction the maker is changed
to display ‘<s>’

The Slot Instruction Marker

Slot instructions are marked with ‘-s-’. If the PC is currently on
a slot instruction the maker is changed to display ‘<s>’.

The Debugger

8-32

Selecting Source Instructions

To select a line click the left mouse button on the line. Selecting
a source instruction in the upper region highlights the
correspondingly generated instruction(s) in the lower region. If
a program contains macros or C source code components there
may be a one to many relationship between source and
disassembly instructions.

Setting Breakpoints

Clicking in the left hand side of the display will select a line and
set a breakpoint on it. Pressing Ctrl+F5 displays the Breakpoint
configuration dialog box.

The Display Menu

The Display menu controls the window refresh rate and how the
contents of the upper and lower window displays are centred.

The Origin Menu

The Origin menu controls the starting position of the upper or
lower window display.

Display

Update Rate Shift+U
Save As Defaults
Zoom Ctrl+Y
Switch Active Space
Centre on Trace
Centre on Bpoint
Centre on Instr. Error

Origin

Goto... Ctrl+G
Go to Cursor Home

Code Windows

8-33

The Format Menu

The Format menu determines the format of items displayed in
the window.

The Execution Menu

See also
“Tracing”
on page

8-65.

The Execution menu provides the ability to run code and trace
program execution. In addition, the target can be stopped and
reset and the contents of its registers saved and retrieved (only
one level of save).

Run All Targets (Ctrl+F9)

Selecting this command starts all targets executing code from
the current position of the PC. This command is equivalent to
selecting Run from PC for all targets.

Stop All Targets

Selecting this command stops code executing on all targets.
This command is equivalent to selecting Stop for all targets.

Execution

Run from PC F9
Run to Address... Shift+F9
Run to Cursor F6
Run All Targets Ctrl+F9
Stop All Targets
Single Step F7
Step Into Shift+F7
Step Over F8
Unstep Ctrl+F7
Stop Esc
Stop (DMA & Interrupts) Shift+Esc
Reset Processor Shiftl+Ctrl+R
Save Registers Ctrl+S
Retrieve Registers Ctrl+R

The Debugger

8-34

The Breakpoints Menu

See also
“Breakpoint
s” on page

8-57.

The Breakpoints menu provides the ability to: set and configure
individual breakpoints; and to remove all breakpoints.

The Utils Menu

The Utils menu provides access to the expression calculator and
search facilities.

Expression Calculator (Ctrl+E)
Selecting this command invokes the expression calculator.

Find (Ctrl+F)
Selecting this command invokes the Search dialog. The search
is case-sensitive and uses the current Format settings for case,
radix, labels and symbol display when performing the search.

To search for a text string or symbol:

1. Specify what to search for. To search for a symbol enter its
name. To search for text enter a double quote followed by
the search text. To include trailing spaces, close the search
text with a double quote.

2. Specify the start address. The default value is the start
address from the previous search. If no searches have been
performed the address at the start of the currently displayed
block of memory is used.

Breakpoints

Toggle at Cursor F5
Configure... Ctrl+F5
Remove All Shift+F5

Utils

Expression Calculator... Ctrl+E
Find Ctrl+F

Code Windows

8-35

3. Specify either the length or end address; the corresponding
Length or End Address field will be filled in automatically.
The default values are the length or end address from the
previous search. If no searches have been performed the
address, and corresponding length, at the end of the
currently displayed disassembly is used.

Example

A possible search string could be:

“A search string

A possible search string with trailing spaces could be:

“A search string with trailing spaces ”

A possible symbol search could be:

Master_Start+20

The Debugger

8-36

8.5.2 Disassembly Window
The Disassembly window, equivalent to the lower region of the
Mixed window, displays a full window of the disassembled
memory at the target. See the Mixed window for a full
description.

Code Windows

8-37

8.5.3 Source Window
The Source window, equivalent to the upper region of the
Mixed window, displays a full window of the source code. See
the Mixed window for a full description.

The Debugger

8-38

8.6 The Registers Window
The Registers window displays the contents of the processor's
general registers and the instruction at the PC. Choose
Registers from the Windows menu to open the Registers
window, shown in Figure 8-1 below. The window defaults to a
horizontal, hexadecimal display.

 Figure 8-1. The Registers window.

The Status Bar

The status bar displays information about the current target.

Formating the Display

The Format Menu commands control the display of the
Memory window.

Editing Register Values

You can edit the value of any of the registers by entering the
new value at the cursor position. (For a flag register Press ‘1’ to
select a bit and ‘0’ to clear it.) In addition, the Edit menu
provides access to commands for changing register values. Use
+ and - to increment or decrement the value of a register, or
press Enter to enter an expression. The result of the expression
will be truncated to fit the size of the register under the cursor.
To invoke the expression evaluator use Ctrl+E.

[�] 1:SAT_SH2_MAIN-Mem{3} [�][�]
 Display Origin Format Edit Utils
” / 0x6000bff +/-1 ”
” 06000BFF 00 53 45 47 41 20 53 45 47 41 .SEGA SEGA ”
” 06000C09 53 41 54 55 52 4E 20 53 45 47 SATURN SEG ”
” 06000C13 41 20 45 4E 54 45 52 50 52 49 A ENTERPRI ”
” 06000C1D 53 45 53 53 47 30 30 30 30 30 SESSG00000 ”
” 06000C27 30 30 20 56 31 2E 30 30 30 31 00 V1.0001 ”
” 06000C31 39 39 34 30 38 30 31 43 41 52 9940801CAR ”
” 06000C3B 54 31 36 4D 20 4A 54 55 42 4B T16M JTUBK ”
” 06000C45 41 45 4C 20 20 20 20 20 20 20 AEL ”
” 06000C4F 20 4A 20 20 20 20 20 20 20 20 J ”
” 06000C59 20 20 20 20 20 20 20 53 41 4D SAM ”
” 06000C63 50 4C 45 20 47 41 4D 45 20 20 PLE GAME ”
¨� þ††† �˜Ù

The Registers Window

8-39

Saving and Retrieving Register Values.

To save the contents of the registers use Ctrl+S and Ctrl+R to
retrieve them. The processor is reset using Shift+Ctrl+R.

To change the window refresh rate choose Update from the
Display menu or use Shift+U.

The Debugger

8-40

8.7 The Memory Window
The Memory window shown in Figure 8-2 below displays the
contents of a given address in either byte word or long format.
Local menu items set the address to view, the format of memory
contents and change the contents of memory locations.
Additional items control the update rate and invoke the
expression calculator.

 Figure 8-2. The Memory window.

Formatting the Display

The default display shows memory contents as bytes on the left-
hand side with the corresponding ASCII display on the right-
hand side. To show memory contents as words use Shift+W;
use Shift+L for longs and Shift+B to return to bytes. To display
a specified number of bytes use Ctrl+B. Clicking on an ASCII
character moves the cursor to the corresponding byte position in
the memory display. To turn the ASCII display on and off use
Ctrl+A.

Editing Memory Locations

To edit the contents of a memory location type the new value at
the cursor or press Enter to enter an expression. The result of
the expression will be truncated to fit the currently selected
display format (either byte, word or long).

[�] 1:SAT_SH2_MAIN-Mem{3} [�][�]
 Display Origin Format Edit Utils
” / 0x200009bb +/-1 ”
” 200009BB 00 00 00 00 00 43 4F 50COP ”
” 200009C3 59 52 49 47 48 54 28 43 YRIGHT(C ”
” 200009CB 29 20 53 45 47 41 20 45) SEGA E ”
” 200009D3 4E 54 45 52 50 52 49 53 NTERPRIS ”
” 200009DB 45 53 2C 4C 54 44 2E 20 ES,LTD. ”
” 200009E3 31 39 39 34 20 41 4C 4C 1994 ALL ”
” 200009EB 20 52 49 47 48 54 53 20 RIGHTS ”
” 200009F3 52 45 53 45 52 56 45 44 RESERVED ”
” 200009FB 20 20 20 20 20 06 00 09 ... ”
” 20000A03 4A 06 00 09 4A 06 00 09 J...J... ”
” 20000A0B 4A 06 00 09 4A 06 00 09 J...J... ”
¨� þ†† �˜Ù

The Memory Window

8-41

To increment or decrement a value use the + and - keys. The
default value incremented or decremented by + and - is one. To
change the amount incremented or decremented by + and -
choose Inc/Dec Amount from the Edit menu.

Copying and Filling Memory

Memory Fill (Shift+F)

Selecting this command fills a range of memory with a specifed
byte. The specified memory range can contain invalid areas but
these areas will not be read from or written to.

Memory Copy (Shift+C)

Selecting this command copies a range of memory to another
location. The copy destination memory must not overlap the
copy source memory. The specified memory ranges can contain
invalid areas but these areas will not be read from or written to.

8.7.1 Finding Memory

Find Memory (Ctrl+F)

Selecting this command allows you to define and search an area
of memory for a specified pattern of data. If a match is found,
the address of the match is displayed. The search will
automatically skip over any sensitive areas such as invalid
memory areas, write-only memory and memory reserved for the
monitors.

The Debugger

8-42

Finding a Pattern in Memory

Memory searches are specified in the Search Target Data Block
dialog box.

To find an area of memory:

1. Select the Mode as either Binary, Decimal, Hex or ASCII.

2. Select the Width as either Byte, Word or Long. Width
specifies how to compare the search pattern with the
memory contents by aligning the search pattern with the
data in the target’s memory.

The allowable search width depends on the search mode
chosen. The valid Mode and Width combinations are shown
in Table 8-1 below.

3. Specify the pattern to search for. In binary, decimal and hex
modes the search pattern can optionally be delimted by
either commas or a semi-colons. The meanings of the
comma and semi-colon delimiters are discussed below.

4. Specify the start address. The default value is the start
address from the previous search. If no searches have been
performed the address at the start of the currently displayed
block of memory is used.

The Memory Window

8-43

5. Specify either the length or end address; the corresponding
Length or End Address field will be filled in automatically.
The default values are the length or end address from the
previous search. If no searches have been performed the
address, and corresponding length, at the end of the
currently displayed block of memory is used.

Example

The following patterns are treated as equivalent when the Hex
and Byte widths are set:

FF,FF,FF,FF,34,DC
FF;FF;FF;FF;34;DC
FFFFFFFF34DC

The ? Wild Card

A special wild card character, ‘?’, can be used in Binary and
Hex modes. The ‘?’ character specifies a nibble in Hex mode
and a bit in Binary mode that always results in a successful
match.

Example

In Hex mode, FF?F will match with
FF0F,FF1F,FF2F,...,FFFF . In Binary mode, ????1111 will
match with 00001111,00011111,...,11111111 .

Mode Valid Widths

Binary Binary, Word, Long

Decimal Byte

Hex Binary, Word, Long

Text n/a

Table 8-1. Mode and Width combinations for memory searches.

The Debugger

8-44

Automatic Padding

The search pattern is automatically left-padded for the Binary,
Decimal and Hex modes. The type of padding is either ‘0’ or ‘?’
depending on the delimiter used.

The Comma delimiter

Delimiting the search pattern with commas (the default)
automatically left-pads it with zeroes. This means that in Hex
mode with Byte width the search patterns, FFFFFFFF34DC and
FF,FF,FF,FF,34,DC for example, perform the same sarch as the
comma sepaerator is implied in the former. Further examples, in
Hex mode and Word width, are:

f,87d,a automatically pads to 000F,087D, 000A

f87da automatically pads to 000F,87DA

, automatically pads to 0000

Note that a single comma used on its own produces the pattern
0000. This can be useful but you should be careful when using
this feature. For example,

,7 automatically pads to 0000,0007

which may not be the desired search pattern.

The Semi-colon Delimiter

Delimiting the search pattern with semi-colons automatically
pads it with the ‘?’ wild card. Examples, in Hex mode and Word
width, are:

f;8d;a automatically pads to ???F,?87D,???A

f;87da automatically pads to ???F,87DA

; automatically pads to ????

The Memory Window

8-45

Examples

You can specify the same same search pattern in different ways
using the comma and semi-colon delimiters. The following
patterns are treated as equivalent when the Hex and Byte widths
are set:

FF,FF,FF,FF,34,DC
FF;FF;FF;FF;34;DC
FFFFFFFF34DC

The comma and semi-colon delimters can be mixed to produce
precise search patterns. For example, in Hex mode and Word
width:

f;f0f0f0f0,fffffff?,;7;

automatically pads to

???????F,F0F0F0F0,FFFFFFF?,???????F,???????7

The Debugger

8-46

8.8 The Watch Window
See also

“Expression

Formatting”
 on page

8-72.

Watch expressions are used to determine the point at which a
value changes in memory. The Watch Window displays a list of
all the watch expressions set and is dynamically updated.

Using Watch Expressions

To add a watch expression use Ctrl+A. Alternatively, press
Enter on an empty watch line to invoke the watch expression
editor. A new expression can then be entered in the next free
slot. The current expression can be edited by pressing Enter or
deleted using Ctrl+D. To move between expression entries can
use the cursor keys or click with the left mouse button.

The Watch Window

8-47

8.8.1 Structure Browsing
The Watch window allows you to view and browse the data
structures in the currently loaded COFF. Compound or derived
data types can be expanded and contracted .

Displaying Structre Browse Information

To display structure browse information the currently loaded
COFF must have been produced from C source files compiled,
with debug enabled (-g), and linked by either the Sierra or GNU
tools.

To display a data type and its associated values enter the
variable name as the watch expression. Compound or derived
data types which may be examined in greater depth have a ‘+’
character in the leftmost column of the display.

To expand the structure of a compound or derived data type
first highlight the required expression then press Spacebar to
expand the type structure by one level. Note that the ‘+’ symbol
changes to a ‘- ’ indicating that the structure may be collapsed.
Type expansion is possible until an integral type is displayed.
To collapse an expanded type structure press Spacebar.

Individual lines may be deleted to allow only specific browse
items to be watched. To delete a browse item first select the
required item then use Crtl+D to delete it. Note that removing an
expanded browse item also deletes all data it contains.

The Debugger

8-48

8.9 The Program Window
The debugger's Program window provides the ability to create
new windows tailored to specific needs. This facility is made
possible by extending the Tcl language used to construct the
debugger’s standard windows. A standard Tcl interpreter is
provided with SNASM2 specific extensions to allow; access to
target memory, a display window, and debugger events.

How the Program Window Works

The Program window is initialised by a user’s Tcl program.
This binds scripts and/or procedures to key and mouse events
and to two timer driven debugger events: “refresh”, for
accessing target memory; and “update”, for display changes.

Creating and Editing Tcl Programs

To open the Tcl program editor choose New Program from the
Utils menu or use Alt+E. The program editor has a fixed size and
position.

To save the program source use Alt+X; this also exits the editor.
The modified code is run in a re-initialised interpreter.

To Find Out More About Tcl

A full and informative description of Tcl is given in “Tcl and
the Tk Toolkit” by John K Ousterhout (the creator of Tcl).
Published by Addison Wesley, 1994. ISBN 0-201-63337-X

The Program Window

8-49

8.9.1 SNASM2 Tcl Extensions
The SNASM2 extenstions to the Tcl language are described
below.

put [Row Column] Text

This displays the string Text at the current cursor position or at
(Row,Column), if specified.

clear

This clears the window and places the viewport origin and
cursor position at (0,0).

setrc Row Column

This sets the cursor position to (Row,Column).

where {Cursor|Mouse}

This returns the position of the cursor or mouse as “Column
Row” in decimal.

readmem [{Byte|Word|Long}] Address Count

This returns a list of Count hex numbers of the specified size
(the default is Byte) from Address.

sendmem [{Byte|Word|Long}] Address Values

This writes Values (a list of numbers) in the specified size
(default Byte), to Address.

sym Name

This returns the value, in hex, of Name in the current target's
symbol table. If no match can be found the message “Symbol
not found” is returned.

The Debugger

8-50

tosym Value [{Exact|Before|After}]

This returns the name of the symbol with value Value,
according to the specified search mode (default Exact). The
search modes are:

Exact This returns a symbol found with value Value.

Before This returns the symbol with value next
smaller than Value.

After This returns the symbol with the next greater
value than Value.

If no match is found the unmatched value Value is returned.
Multiple symbols with the same value can be obtained by
repeated calls using the exact match mode.

firstsym Name Pattern

This initialises a scan of the symbol table for symbol names
matching the ‘glob’ style pattern Pattern. Name is the name of
the Tcl variable to use for storing internal scan progress
information. Returns the first match found or “Not Found” if no
match was made.

nextsym Name

This continues the symbol table scan initiated by a call to
firstsym with variable name Name. Returns the next matching
symbol name or “Search Completed” if no further match can be
found.

getvalue Title

This opens a dialog box, with title Title to prompt for a string
value. Returns the entered text. This command may not be
invoked during a refresh event (see below).

The Program Window

8-51

bind [Event [Script]]

This creates bindings to events or returns details of bindings
made depending on the arguments specified. Event specifiers
are enclosed in ‘<’ and ‘>’ and scripts are quoted with {}. bind
with no arguments returns a list of all events with defined
bindings. bind with the Event argument alone returns the script,
if any, bound to Event. bind with both Event and Script
arguments creates a new binding, or replaces an existing one
such that Script is evaluated whenever Event occurs.

Supported events are:

<refresh> This refreshes communication with the target.
Data reads and writes should be done here but
not displayed as it slows down the target.

<update> This updates the window. Changes to the
display of data are done here. Reading or
writing target memory should be avoided.

<sequence> This specifies a keypress or mouse click.
Keys are specified by name or letter which
matches any unbound key combination.
Mouse clicks are <Button1>, <Button2> or
<B1> and <B2> etc.

The Event type may be qualified by a number of hyphen
separated modifiers: Shift, Ctrl and Alt are keyboard modifiers
for key or mouse event; Single, Double and Release represent
the type of mouse event; Any is any combination, including
none, of the above. Note that more explicit bindings are
matched in preference to the general variety. Sequence
specification is case insensitive.

readbin @[~] Filename Length Address [report]

This reads binary data from a target using the specified file
Filename. Filenames must be prefixed with ‘@’. The optional
‘~’ character will prefix the Debugger’s executable path to the
specified filename. The optional report parameter causes the

The Debugger

8-52

Debugger to report‘in progress’ information, and a success/
failure summary.

The target is defined as the processor associated with the
'Program Window' running the .PRG file.

sendbin @[~] Filename Length Address [report]

This sends binary data to a target using the specifed file
Filename. Filenames must be prefixed with ‘@’. The optional
‘~’ character will prefix the Debugger’s executable path to the
specified filename. The optional report parameter causes the
Debugger to report‘in progress’ information, and a success/
failure summary.

The target is defined as the processor associated with the
'Program Window' running the .PRG file.

Examples

This example reads 1Mbyte of data from the target commencing
at address 0x6100000. The data is read into the file TEST.BIN
located in the Debugger executable directory. Full ‘in progress’
reporting is requested.

readbin @~TEST.BIN 0x100000 0x6100000 report

To send 1Mbyte of data to the target address 0x6100000 from
the file TEST.BIN located in the current directory using 'quiet'
mode (no reporting other than error conditions)

sendbin @TEST.BIN 0x100000 0x6100000

The Breakpoints Window

8-53

8.10 The Breakpoints Window
See also

“Breakpoint
s” on page

8-57.

The Breakpoints window has a similar display to the Watch
window. The Breakpoints window displays a list of all
breakpoints set and is dynamically updated. Manipulating
breakpoints from within the Breakpoints window affects all
Code windows.

Using Breakpoints

To add a breakpoint use Ctrl+A or press Enter on an empty
breakpoint line which will invoke the breakpoint configuration
dialog. The current breakpoint can be configured by pressing
Enter or removed using Ctrl+D. To move between expression
entries use the cursor keys or click with the left mouse button.

Breakpoints in Source Displays

Some source instructions generate several assembly
instructions. In a Disassembly window or disassembly region of
the Mixed window, to set a breakpoint for such source
instructions requires setting the breakpoint on the first assembly
instruction generated by the source instruction. The breakpoint
cannot be set on the second or subsequently generated assembly
instructions.

The Debugger

8-54

8.11 The Log Window
The Log window displays a list of log expressions evaluated as
a result of triggering a breakpoint. The log expressions are set
from the Breakpoint Configuration dialog box for individual
breakpoints in Code or Breakpoint windows. Viewing the
resulting contents of the Log window can be helpful if you need
to analyse the status of your program at specified points during
its execution. This can be likened to a simple form of profiling
code.

The File Viewer Window

8-55

8.12 The File Viewer Window
The File Viewer window displays ASCII text files, usually
source code. Opening a File Viewer window for a new file
displays the file selector dialog box. The title bar of the file
selector dialog box displays the name and date of the file being
viewed. Note that files can be viewed but not modified in this
window.

The Debugger

8-56

8.13 The Local Vars Window
The Local Vars window shows all variables in the current
scope. The Local Vars window is similar to the Watch window
except that the variables that are displayed change as the scope
changes.

Individual lines may be deleted to allow only specific variables
be shown. To delete a variable first select it then use Crtl+D to
delete it.

The values of local variables can be modified. Choose Edit
(Add) from the Utils menu or press Enter to modify the value of a
variable.

Breakpoints

8-57

8.14 Breakpoints
The debugger provides a powerful and flexible breakpointing
facility, from simple single-shot to complex conditional
breakpoints, and can log the output to monitor the state of
variables and registers as the program runs.

The debugger supports the hardware breakpoint facilities
available on the SH2. Hardware breakpoints are implemented
by setting breakpoint conditions in the SH2’s User Break
Controller (UBC). A user break interrupt request is sent to the
SH2 when these conditions are met.

The next sections describe how to use breakpoints, how to
configure software and hardware breakpoints

8.14.1 Using Breakpoints
This section describes how to use breakpoints in the debugger.
It shows you how to set, configure and clear breakpoints. It also
shows you how to view breakpoints and what breakpoint
information is saved in session files.

Setting Breakpoints

To set a breakpoint open a code window and use F5 or Ctrl+F5
on a highlighted instruction. In a code window, pressing F5 or
clicking the left mouse button in the left-hand margin sets a
default breakpoint. Default breakpoints are permanent with no
attached conditions or counts i.e. when a default breakpoint is
encountered during program execution the only resulting action
will be the halting of execution. These breakpoints can be set
whilst the target is running and take effect immediately.

Configuring Breakpoints

In a code window, pressing Ctrl+F5 configures an existing
breakpoint or sets a new breakpoint and invokes the breakpoint
configuration dialog box. The breakpoint will not take effect

The Debugger

8-58

until configuraton is complete. This allows you to specify
individual breakpoint behaviour according to requirements.

Clearing Breakpoints

To clear a breakpoint, first highlight the breakpoint and than use
F5 or click the left mouse button in the left-hand margin to
remove it.

See also
“The

Breakpoints
 Window”
on page

8-53.

Viewing All Defined Breakpoints

The Breakpoints window provides a global view of all defined
breakpoints for each target. The breakpoint window also
provides the ability to define, remove or configure breakpoints.

See also
“Session
Files” on

page 8-8.

Breakpoints and Project Information

Breakpoints can be saved in a session file by ticking the Project
Information tick box. Note that breakpoints will only be restored
as part of a session restore if the same underlying binary code is
present. If the instruction code at the breakpoint address is
different to that present when the breakpoint was specified, the
breakpoint is discarded.

Breakpoints

8-59

8.14.2 Configuring Software Breakpoints
Breakpoint characteristics are controlled through the
Breakpoint Configuration dialog box shown in Figure 8-2
below. The Fname:Line# field displays the filename and line
number on which the breakpoint will be set. The Address field
shows the address of the instruction on which the breakpoint
will be set. The Hardware tick box specifies whether the
breakpoint will use the hardware breakpoint facilites available
on the SH2. The debugger uses software breakpoints by default;
hardware breakpoints must be specifically enabled.

There are two sets of check boxes for configuring the type of
breakpoints and the action they take: Condition Flags and
Action Flags. The Condition Flags check boxes set the
conditions under which a breakpoint applies, the Action Flags
check boxes set the action to take when the breakpoint is
encountered.

 Figure 8-2. The Breakpoint Configuration dialog box.

[�] Breakpoint Configurationÿ
” ”
” Fname:Line# Address Hardware ”
” Ú˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜¿ Ú˜˜˜˜˜˜˜˜˜˜˜˜˜¿ Ú˜˜˜˜˜˜˜˜˜¿ H/W Config ß ”
” ‡master.asm:42 ‡ ‡0x06004002 ‡ ‡ [ß] H/W ‡ ßßßßßßßßßßßßß ”
” À˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜Ù À˜˜˜˜˜˜˜˜˜˜˜˜˜Ù À˜˜˜˜˜˜˜˜˜Ù ”
” ”
” ÚCondition Flags˜¿ Expression to Evaluate ”
” ‡ ‡ Ú˜˜˜¿ ”
” ‡ [] Evaluate ‡ ‡No Conditional Expression ‡ ”
” ‡ ‡ À˜˜˜Ù ”
” ‡ [ß] Enabled ‡ Current Count Trigger Count ”
” ‡ ‡ Ú˜˜˜˜˜˜˜˜˜˜˜˜˜¿ Ú˜˜˜˜˜˜˜˜˜˜˜˜˜¿ Reset ß ”
” ‡ [] Count ‡ ‡0x00000000 ‡ ‡........ ‡ ßßßßßßßßßßßß ”
” À˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜Ù À˜˜˜˜˜˜˜˜˜˜˜˜˜Ù À˜˜˜˜˜˜˜˜˜˜˜˜˜Ù ”
” ”
” ÚAction Flags˜˜˜˜¿ Expression to Print in Log ”
” ‡ ‡ Ú˜˜¿ ”
” ‡ [] Log ‡ ‡No Expression to Evaluate and LOG ‡ ”
” ‡ ‡ À˜˜Ù ”
” ‡ [ß] Halt ‡ ”
” ‡ ‡ OK ß Cancel ß ”
” ‡ [] Single Shot‡ ßßßßßßßßßß ßßßßßßßßßß ”
” À˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜Ù ”
¨˝˝˝…

The Debugger

8-60

Setting Condition Flags

Condition Flags specify the type of breakpoint condition.

Use Evaluate to evaluate the expression specified in the
Expression to Evaluate field. Clearing this check box retains the
conditional expression but does not evaluate it i.e. the
breakpoint is treated as unconditional.

Use Enabled to set a breakpoint. Clearing this check box
disables a set breakpoint. The breakpoint is not discarded and
mthe current settings are kept. This is the most powerful type of
breakpoint. They allow an action at a particular address only if a
set of conditions apply. Each conditional breakpoint has an
expression associated with it which is evaluated each time the
breakpoint is reached. Only if the expression evaluates to a non-
zero value i.e. True, will an action be taken. If an invalid
expression is entered, an expression error will be detected on
evaluation and the breakpoint disabled. The evaluation will be
forced to True as a result, an immediate unconditional
breakpoint will occur and a warning issued.

Use Count to configure the breakpoint as a counter. Each time
such a breakpoint is reached a counter associated with it is
incremented and displayed in the configuration dialog box.
These breakpoints are useful for profiling in that they act like
monitors.

If both an expression string and a Count or Trigger Count are
specified and relevant condition boxes are ticked, then each
time the expression evaluates to True i.e. non-zero, the count
will be incremented. On the value of Current Count reaching the
value of Trigger Count the whole conditional breakpoint is
deemed True and the specified action will be performed.

Breakpoints

8-61

Setting Action Flags

Action Flags specify what will happen when the breakpoint is
encountered. There are three possible actions; Log, Halt and
Single Shot.

Use Log to send the specified expression to a Log window
every time the breakpoint is hit.

Use Halt to stop program execution after the breakpoint
instruction has been executed.

Use Single Shot to set one-off breakpoints which are cleared
when executed, otherwise the breakpoint will remain set.

Reset

The Reset button sets the current count to zero.

The Debugger

8-62

8.14.3 Configuring Hardware Breakpoints
The debugger supports the hardware breakpoint facilities
available on the SH2. Hardware breakpoints are implemented
by setting breakpoint conditions in the SH2’s User Break
Controller (UBC). A user break interrupt request is sent to the
SH2 when these conditions are met.

Channel Management

The UBC has two channels, Channel A and Channel B. Channel
B is more sophisticated as it allows you to set breakpoints on
data bus conditions. The debugger automatically allocates
channel resources according to the configuration of the
currently enabled hardware breakpoints.

The User Breakpoint Config Dialog Box

Hardware breakpoints are configured through the User
Breakpoint Config dialog box. Options in this dialog box
represent the break compare conditions that can be set in the
UBC. The options are each described in turn below.

Address

This is the address in hex at which the breakpoint is set.

Mask

The is the bit mask for the Address, entered in hex; the bit mask
is generated automatically.

Break Cycle

This is the Bus master where:

CPU is the CPU cycle condition.

Periph is the peripheral cycle condition.

ChipExt is the chip-external cycle condition.

Breakpoints

8-63

Break Access

This is the Bus master where:

InsFetc is the Instruction fetch condition. Set this to
trigger the breakpoint immediately before
execution of the instruction at the address
specified by Address.

BrkAfte is the Instruction After condition. Set this to
trigger the breakpoint immediately after the
instruction at the address specified by
Address.

Data is the Data access condition. Set this to trigger
the breakpoint on data access.

Access Cycle

Read is the Read condition. Set this to trigger the
breakpoint on a read access cycle.

Write is the Write condition, Set this to trigger the
breakpoint on a write access cycle.

Operand Size

Byte is the Byte condition. Set this to trigger the
breakpoint if the size of the instruction’s
operand is Byte.

Word is the Word condition. Set this to trigger the
breakpoint if the size of the instruction’s
operand is Word.

Long is the Long condition. Set this to trigger the
breakpoint if the size of the instruction’s
operand is Long.

The Debugger

8-64

Channel B Specifics

Data The data value condition in hex. This is a
single 32-bit value representing the two
combined 16-bit break data registers.

Masks Bitmask for the data value condition. The
bitmask is entered in hex as a single 32-bit
value, representing the two combined 16-bit
break data mask registers. Set bits to 0 to
include the corresponding data value
condition bit; set bits to 1 to mask the
corresponding data value condition bit. The
bitmask is displayed automatically.

Inlcude Data Bus in Conds.

Tick box to include the data bus in the
breakpoint condition.

Breakpoints

8-65

8.14.4 Tracing
All trace operations take precedence over breakpoints i.e. any
breakpoints encountered whilst tracing a block of code are
ignored.

Single Step F7

In disassembled code, the target executes the instruction at the
PC with the current register values and then stops. A Trap,
Line-A or Line-F is treated as a single instruction and program
execution halted on returning.

In source code, the target executes the instruction at the PC with
the current register values and then stops when all low level
assembly instructions generated by the single source instruction
have been executed i.e. all instructions for a source macro
instruction or C instruction which generates several assembler
instructions have been executed.

If you are single stepping source instructions in the upper
region of a mixed window the animated single stepping of
individual assembler instructions will be displayed in the lower
region of the window i.e. for the lower region instructions a
Trap, Line-A or Line-F is treated as a single instruction but
program execution continues until the next source instruction.

Step Over F8

In disassembled code, the target executes the instruction at the
PC with the current register values and then stops. A Trap, Trap
V, Line-A, Line-F, BR, JSR or DBRA is treated as a single
instruction and program execution halted on returning.

In source code, the target executes the instruction at the PC with
the current register values and then stops when the source file
reference has changed. A Trap, Trap V, Line-A, Line-F, BSR,
JSR or DBRA is treated as a single instruction and program
execution is halted on returning.

The Debugger

8-66

Step Into Shift+F7

This forces individual asssembly instructions to be traced one at
a time.

In disassembled code, the target executes the instruction at the
PC with the current register values and then stops. A Trap,
Line-A, Line-F, or subroutine is entered and program execution
halted inside subroutines and branches at the first instruction.
Traps and JSRs etc. are therefore stepped into.

In source code, the target executes the instruction at the PC with
the current register values and then stops at each individually
generated assembler instruction. Each individual assembler
instruction is traced using the step into mechanism i.e. a Trap,
Line-A, Line-F, or subroutine is entered and program execution
halted inside. In the case of a single source instruction
generating many assembly instructions you will need to press
Shift+F7 several times on the source instruction before
progressing to the next source instruction. In Mixed windows
your progress through the source instruction trace is displayed
in the lower disassembly region. In the disassembly region the
PC moves one assembly instruction for each key press. This
enables you to debug macro and complex source instructions at
a detailed level.

Unstep Ctrl+F7

All instructions traced using Step Into may be untraced. Only
individually single stepped instructions may be untraced i.e. it is
not possible to untrace any instructions stepped over, or any
Traps, Line-A’s or Line-F’s encountered whilst single stepping.
Source instructions can be unstepped only if they were single
stepped and no Traps, Line-A’s or Line-F’s were encountered in
the body of their generated code or they were executed using
multiple step into requests.

Expressions

8-67

8.15 Expressions
The debugger uses a similar expression evaluator to the
assembler with the addition of powerful expression formatting
facility. Use Ctrl+E to invoke the expression calculator.

Default Base

In contrast to the assembler, the default base is hexadecimal and
‘*’ is used for multiplication only. Note that expressions
starting with a hexadecimal number must have a leading 0 to
differentiate it from a register name so for example, the register
d0 is not confused with the hexadecimal value d0.

Expressions enclosed in square brackets return the word at the
memory location given by the result of the expression. The
square brackets can optionally be suffixed with @B, @W, or
@L to return the byte, word or long respectively.

8.15.1 GNU C++ Qualified Function Names
The expression evaluator accepts GNU C++ qualified function
names, with support for class functions and overloaded
operators. Global symbols (i.e static members) within a class
can be viewed using a fully qualifed name in the Watch
window.

Names are decoded according to scheme described in “The
Annotated C++ Reference Manual” by Margaret A. Ellis and
Bjarne Stroustrup.

The Debugger

8-68

Syntax

The fully qualified name must be used so that the symbol
reference can be resolved:

[ClassName::][, ClassName::]... SymbolName

where:

ClassName is the name or comma delimited list of names
required to form the qualifed function name.

SymbolName is the name of a function or operator.

Note that white space is ignored. For example, the following
expressions will be considered as identical:

foo :: operator !
foo::operator!

Expressions

8-69

Examples

Consider the following section of code for a class definition:

void *operator new (size_t size)// global overloaded operator
{

return ::new char [size];
}
class foo // dummy class foo
{

// internal variables
int foo_a, foo_b;

public:
// static variable
static int static_var;
// constructors & destructor
foo() { foo_a = 0; foo_b = 0; };
foo(int a, int b = 0) {foo_a = a; foo_b = b};
virtual ~foo() {};
// class functions
virtual void display();
void *operator new(size_t size) {return ::new char

[size];};
foo &operator !(foo &a);
// conversion operators
operator int();
operator foo2();

};
int foo::static_var;// storage space for static

Valid Expression Qualifiers

The valid expression qualifiers produced from this class is:

operator new Global New
foo::operator::new Class foo overload of operator new
foo::static_var Static variable
foo::~foo Class destructor
foo::operator int Conversion operator from integer
foo::operator foo2 Conversion from another class type foo2

Invalid Symbols

In the expression evaluator, entering an invalid symbol name, such as
‘ foo::operator | ’ instead of ‘foo::operator ! ’ will generate an
error at the ‘::’ token not the ‘|’. This is because the expression
evaluator is unable to evaluate which of the tokens is incorrect and so
reports the first of the tokens it is unable to decide on.

The Debugger

8-70

Considerations and Limitations

• Overloaded functions cannot be distinguished between
using only the qualified name e.g. foo::foo .

• Global constructors or destructors are created if a class
variable is defined within file scope. This situation normally
defines two special labels on the constructor or destructor:

__GLOBAL_IString
__GLOBAL_DString

where:

Stringis a string from an unknown class function name.

These labels are not decoded as no information about how
they were generated is available.

• Symbol names are limited to 127 characters.

• Do not use compiler generated default constructors or
destructors as a Goto in the Source window or source region
of a Mixed window. This will cause incorrect line references
to be displayed in the Disassembly window or disassembly
region of the Mixed window. This happens because no
source code exists for the constructor or destructor; the line
number that was assigned just before the compiler created
the code is displayed instead. This line number is usually the
last line of a class definition.

• When browsing C++ sub-structures and sub-classes in the
Watch window you have to follow two sets of indirection,
not the single set provided by a C compiler.

• In the Watch window some references a virtual table e.g.
**$vf, **$vb are displayed as pointers to an unknown class.
This is because these variables exist in within classes that
that were derived from virtually from parent classes or
contain virtual classes.

Expressions

8-71

8.15.2 Symbol Completion
The Expression Evaluator has a symbol completion facility. In
the Expression evaluator dialog, to complete a partially entered
symbol press the Symbol button. If a unique symbol name can
be identified the name will be completed automatically. If more
than one possible name exists you will be presented with a list
of symbol names to choose from. The list will be sorted in
alphabetical order, beginning with the character at the end of
the input text. Pressing the Symbol without first entering part of
a symbol name will present you with a list of all symbols in the
currently loaded COFF. Valid symbol characters are A-Z, a-z,
0-9, '_', '.', ':' and '~'.

The Debugger

8-72

8.16 Expression Formatting
The debugger provides a powerful expression formatting
facility for controlling the display of expressions in Log and
Watch windows. Formatting is controlled by the use of
formatting expressions which work in a similar way to the C
‘printf’ function, consisting of a formatting string followed by
any number of comma separated expressions. The expressions
are numbered from 0 and can be any valid debugger expression
referencing register names or memory locations. The syntax for
a formatting expression is:

[" FormattingString" |FormattingString,] [Expression]...

Expression Formatting

8-73

8.16.1 The Format Specification
The formatting string consists of one or more format
specifications. Each specification starts with a ‘%’ symbol
optionally followed by one or more modifiers and terminates
with a format specifier; multiple specifications are separated by
spaces or by enclosing the sequence in quotes and separating
each specification with a comma. The syntax for the format
specification is:

%[Pointer][Width][Repeat]Specifier

where:

% denotes the start of a format specification.

Pointer denotes an optional modifier that repositions
the parameter pointer.

Width denotes an optional modifier that specifies the
display width of the expression.

Repeat denotes an optional modifier that specifies the
number of items to display.

Specifier controls pointers and formats affecting the
display of the expression.

Each expression must have the same number of operands as
format specifications (‘%’ characters). Insufficient operands
will cause the debugger to generate an error.

All expression operands must evaluate. If an operand evaluates
to a section relative address the string is displayed as
“SectionName: Value”.

The Debugger

8-74

8.16.2 The Format Specifier Character
The format specifier character is used to control pointers and
formatting instructions that affect the display of an expression.
The characters and their effects are given in Table 8-4 below.

.

Examples

%d Format parameter as a decimal signed integer.

%u Format parameter as a decimal unsigned
integer.

%H Format parameter as a hexadecimal unsigned
integer (using ‘A’-‘F’).

Character Effect

D, d Decimal signed integer.
C, c ASCII character.

U, u Decimal unsigned integer.

O, o Octal unsigned integer.

X, H Hexadecimal unsigned integer using ‘A’-
‘F’

x, h Hexadecimal unsigned integer using ‘a’-‘f’

S, s Pointer to null terminated ASCII string.

T,t Displays the time in the form HH/MM/SS

! Display parameter expression as a string.

I, i Pointer to instruction to disassemble.

Table 8-4. Format specifier characters and their effects.

Expression Formatting

8-75

8.16.3 The Pointer Modifier
A parameter pointer holds the position of the current
expression, the first expression starting at position 0. The
optional pointer modifier repositions the parameter pointer and
follows directly after the ‘%’ symbol. The modifier consists of a
decimal number, optionally preceded by a ‘+’ or ‘-’ symbol and
terminated with a ‘#’ symbol.

Syntax

[+|-]Number#

where:

+|- repositions the parameter pointer relative to
its current position.

Number denotes an absolute value for the parameter
pointer or the size of the relative movement if
used in conjunction with ‘+’ or ‘-’.

Examples

The following example shows a formatting string that displays
its three parameters as decimal signed integers in reverse order.

%2#d %1#d %0#d

The following example shows a formatting string that displays
its parameter first in hexadecimal and then in decimal.

"%0#x,%-1#d"

Note Setting the parameter pointer to a value before the first
parameter causes the pointer to be set to the first parameter.
Conversely, setting the pointer to a value beyond the last
parameter invalidates the action of subsequent specifiers and
they are copied verbatim into the display string.

The Debugger

8-76

8.16.4 The Width Modifier
The optional width modifier specifies the field width within
which the expression is to be displayed and follows the #
modifier (or ‘%’ symbol if no pointer modifier is specified).
The field width is given either as a decimal number or by the
value of the next parameter expression.

Syntax

[-][Number|*]

where:

- denotes that the field is left justified within the
field width. If the ‘-’ symbol is not specified
the field will be right justified.

Number is a decimal number denoting the width of the
field; prefixing Number with a zero will pad
the display field with zeroes. For ‘%s’ formats
the width specifies the maximum number of
characters to display.

* denotes that the field width is specified by the
value of the next parameter expression.

Expression Formatting

8-77

Examples

%4x Format parameter as a 4 digit right justified
hexadecimal unsigned integer (using ‘a’-‘f’).

%-8s Format parameter as a 8 character left
justified string.

%08X Format parameter as a 8 digit hexadecimal
unsigned integer (using ‘A’-‘F’) and pad with
zeroes.

%3#-15S Format the 4th parameter as a 15 character
left justified string.

%*s Format parameter as a string according to the
value of the next parameter.

%4#*d Format parameter as a 4 digit right justified
decimal signed integer according to the value
of the next parameter.

The Debugger

8-78

8.16.5 The Repeat Modifier
The optional repeat modifier controls the number of items
displayed and follows the pointer and width modifiers (if
specified). The modifier consists of a ‘@’ symbol followed by
an optional size modifier and terminated with the number of
items to be displayed.

Syntax

@[Size]Number

where:

@ denotes the start of the repeat modifier.

Size denotes the size of items fetched from
memory which can be one of the following:

b byte
w word
t triple
l long

The endianess of the target processor is
preserved when fetching multi-byte items.

Number is a decimal number denoting the number of
items to be displayed.

Displayed items will be comma separated if the format specifier
is decimal or octal, by spaces if the specifier is hexadecimal and
not spaced at all if the specifier is characters. The repeat
modifier has no effect if the format specifier is a string or
instruction.

5Utilities
SNMAKE

SNLIB

SN2G

5

9-1

9 SNMAKE
The SNMAKE utility enables the SNASM2 development system to be
easily used from within a text editor. SNMAKE works on the common
make utility principle of reading a file containing user defined
relationships between the target(s) the user wishes to create and the
source files from which that target is to be created. The target is said to
be dependent upon its source files which are known generically as
dependencies. The file in which these relationships are defined is
known as the Project File (sometimes called the make file). The project
file contains rules specifying how to recreate targets. Once SNMAKE
has read this file it determines which targets have dependants that have
been updated since the target file was created, and therefore which
targets must be recreated from their dependants.

Note If you are familiar with project files you should note that there are a
number of differences in the SNMAKE syntax compared to
conventional make utilities.

SNMAKE

9-2

9.1 Editor Macros for SNMAKE
Some of the macros used to enhance the editor environment interface
the editor with SNMAKE and allow the utilty to be invoked from
within the editor. The following description assumes that the macros
are being used as supplied, without any reallocation of key-bindings.

See also
“Command-
line Syntax”

on page
9-12.

Use Alt+F9 to invoke the SNASM2 main menu from within one of the
supported text editors. Selecting the menu item Select Project File
will display a window listing all project files in the current directory or
a message if none can be found (SNMAKE project files must have a
‘.PRJ’ extension). The first line of each file is displayed as an ‘aide
memoir’. SNMAKE can also be invoked from the command line with
the /p switch set in which case it will attempt to append a ‘.PRJ’
extension to the project file name it is given. In this mode it is said to
be in project mode. SNMAKE is always in project mode when invoked
from an editor.

Project Files

9-3

9.2 Project Files

9.2.1 Creating Project Files
Project files must contain a label beginning in the first column of the
form:

[SnMake]

SNMAKE performs a case insensitive search for this label and ignores
any text before it. If SNMAKE reaches the end of file before
encountering the label it will generate an error and exit, resulting in an
error window appearing in the editor. SNMAKE treats everything
following the [SNMAKE] label as valid input until it encounters
another ‘[’ in the first column or the end of the file.

There are two other labels, [DEBUG] and [EVAL] which are
significant only if the project file is selected within the editor. The next
non-blank line following the [DEBUG] label contains the command-
line used to invoke the debugger from within an editor. Similarly, the
line following the [EVAL] label contains the command-line to invoke
the expression evaluator, EVALSYM. The command-line consists of
the special token ‘$$$’ which represents the expression passed to
EVALSYM by the editor and the the COFF file to get the symbols
from.

Example

A simple project file might look as follows:

project file to assemble prog.sh2 to t1:
[snmake]

t1:;prog.sh2
snasmsh2 $! /sdb prog.sh2,t1:prog

[debug]
snbugsh2 -t1:prog

[eval]
evalsym /v$$$ prog

SNMAKE

9-4

9.2.2 Defining Targets
SNMAKE regards anything starting in column 0 and terminated with a
‘;’ as a target declaration. The following are all valid target names:

target1;
t1;
e:netwrkt7;

Note that white space in target declarations is stripped out.

9.2.3 Special Targets
SNMAKE supports a number of special targets.

.RESOURCE;

Declares a list of programs that are able to use resource files. It must be
the first item declared in the project file after the [SNMAKE] label.

.INIT;

Commands following this target declaration will always be carried out
first when this project file is executed. The INIT target does not need to
be the first declaration in the project file.

.DONE;

Commands following this target declaration will always be carried out
last when this project file is executed.

.INIT and .DONE do not have to be declared as the first and last targets
within the project file, SNMAKE will recognise them and re-adjust its
list of targets accordingly. .INIT and .DONE will always be executed
and should not be declared with dependants.

t?: ;

The targets on the SCSI bus are recognised and will always cause the
rules associated with it to be invoked. These targets should be declared
with dependencies.

Project Files

9-5

.SNRES

See also
“Example 3”
on page 9-6.

A project file that specifies multiple targets and invokes the assembler
will normally cause the assembler to be invoked for each target. Use
.SNRES to specify a list of commands that are able to use resource
files. This means, for example, that several source files can be placed
in a single file and the assembler invoked once only. This reduces the
overhead associated with invoking the assembler for each file.

Example 1

Program command-lines in a project file that exceed 128 characters in
length in are placed in a temporary file. Each such command is placed
in an individual temporary file called ‘Filename.$$$’ and each
command-line argument placed on a new line in that file. SNMAKE
calls the command using ‘@Filename.$$$’ as shown below.

[SnMake]
.RESOURCE; somecmd

tgt; dep1
somecmd dep1 ... very long command line > 128 chars

SNMAKE will automatically detecting an over-long command-line
and when this occurs create a temporary response file, calling
SOMECMD as follows:

somecmd @tmp1.$$$

SNMAKE

9-6

Example 3

[SnMake]
.SNRES; snasmsh2

t1:; testmain.sh
snasmsh2 $! testmain.sh,t1:

t2:; testsub.sh
snasmsh2 $! /K testsub.sh,t2:

!ifdef(debugstr)
snbugsh2

!endif

[debug]
snbugsh2

9.2.4 Defining Dependencies
Anything following the ‘;’ on the same line as a target declaration is
regarded as a dependency declaration with multiple dependencies
separated by white space.

Example

This example declares that TARGET1.COF is dependant on SRC1.SH
and SRC2.SH. SNMAKE will attempt to invoke any rules defined for
TARGET1.COF if either SRC1.SH or SRC2.SH have been updated
since TARGET1.COF was last created.

target1.cof; src1.sh src2.sh

9.2.5 Defining Explicit Rules
Anything following the end of a target declaration line is considered a
rule declaration. Valid rule declarations must be indented by at least
one space or tab. Blank lines following a target declaration are ignored.
More than one command may follow a given target, each starting on a
new line.

Project Files

9-7

Example

This example defines a rule telling SNMAKE to issue the command
snasmsh2 /l dep1 dep2,target1.cof if TARGET1.COF is
younger than either DEP1 or DEP2.

target1.cof; dep1 dep2
snasmsh2 /l dep1 dep2,target1.cof

9.2.6 Defining Implicit Rules
If SNMAKE cannot create a target using explicit rules it will attempt to
do so using any implicit rules defined in the project file. Implicit rule
declarations begin in the first column with a ‘.’ character and comprise
two parts. The first part is the file extension of the target for which the
rule will apply. SNMAKE searches the list of implicit rules it has
defined looking for a rule that matches the extension of the target it is
trying to make. Thus to define an implicit rule that SNMAKE will use
to deal with any targets with a ‘.COF’ extension the first part of the
declaration is:

.cof

Having found this, SNMAKE attempts to match the second part of the
declaration. This informs SNMAKE that any targets with a ‘.COF’
extension are to be created from a dependency of the same name but
with a ‘.SH’ extension as follows:

.cof,.sh

The second part of the declaration must begin with a ‘.’ character,
unless a path name is specified as below:

.cof,e:temp\.sh

This tells SNMAKE that any targets with a ‘.COF’ extension are to be
created from a dependency of the same name but with a ‘.SH’
extension in directory E:\TEMP.

SNMAKE

9-8

9.2.7 Defining Rules for Implicit Targets
The rule following an implicit target definition must be indented by at
least one space or tab. Two macros exist to aid specifying implicit
rules, $+ and $- where $+ specifies the target and $- its dependency.
Invoking the following implicit rule

.cof,.sh
snasmsh2 $+,$-

on target PROG1.COF will result in the following command:

snasmsh2 prog1.sh,prog1.cof

Note that explicit rules will always be used in preference to implicit
rules if explicit rules have been set for a given target. In addition, if
more than one set of implicit rules are defined for the same target
group, the implicit rule most recently defined (in terms of position
within the project file) will be invoked on any suitable targets so that:

.cof,.sh

will create any suitable targets in this area from files of the same name
with a ‘.SH’ extension.

9.2.8 Line Continuation
Use the ‘\’ character followed immediately by a carriage return to
continue a line without introducing a newline character. The following
example declares DEP1 to DEP11 as dependencies to target 1. Without
the continuation mark SNMAKE would truncate the dependency list at
dep9 .

target1;dep1 dep2 dep3 dep4 dep5 dep6 dep7 dep8 dep9 \
 dep10 dep11

9.2.9 Comments
Comment lines begin with a ‘#’ character and can start at any position
on the line.

Project Files

9-9

9.2.10 Macros
See also

“Command-
line Syntax”

on page
9-12.

Macros can be passed into SNMAKE from the command-line using the
e switch. Macros are defined within the project file using the following
syntax:

macro1= MacroName

Macro definitions must begin in the first column of the line. White
space is stripped out of macro definitions. Defined macros are
referenced using the following syntax :

$(macroname)

Given the above macro definition $(macro1) will expand to
MacroName. ‘$’ signs can be protected from attempted macro
expansion by the addition of the macro syntax breaker ‘$’. Thus
$$20000 is passed though SNMAKE as $20000.

The following macro functions allow the user to manipulate defined
macros.

.

Function Description

$e(MacroName) Expands to the extension of MacroName.

$n(MacroName) Expands to only the filename of the macro
definition.

$p(MacroName) Expands to the pathname of the macro
definition.

$d(MacroName) Expands to the drive name of the macro
definition.

$b(MacroName) Expands to the filename in the macro
definition.

Table 9-1. SNMAKE macro functions.

SNMAKE

9-10

Example

macroname=test.obj
$e(macroname)
$e(macroname) expands to '.obj'

macroname=e:test\test.obj
$n(macroname)
$e(macroname) expands to 'test.obj'

macroname=e:test\temp\test.obj
$p(macroname)
$p(macroname) expands to 'e:test\temp\'

macroname=e:test\temp\test.obj
$d(macroname)
$d(macroname) expands to 'e:'

macroname=e:test\temp\prog1.obj
$b(macroname)
$b(macroname) expands to 'prog1'

9.2.11 Special Macros
SNMAKE provides a special macro to set the i and d assembler
command-line switches from within the project file.

The i switch creates an output window to which output is sent whilst
running, enabling progress to be monitored from within the editor. This
option is always set by the supplied macros.

The d switch puts the assembler into debug mode, i.e. the code is
assembled but not run. This allows the debugger to be entered before
the code is executed. This option can be controlled from the SNASM2
menu using the Set Debug Mode menu item.

Control of these switches from within an editor is possible only if the
$! macro is present on the SNASMSH2 command lines in the project
file as shown below:

targ1; dep1 dep2
snasmsh2 $! /l dep1 dep2,targ1

Project Files

9-11

Assuming that debug mode is set to ‘ON’ (using the Set Debug Mode
option from within the editor) the above command will expand to:

snasmsh2 /i /d /l dep1 dep2 ,targ1

In addition the d and i switches set up two macros, DEBUGSTR and
INFOSTR, which can be tested with the !IFDEF command as
described below.

9.2.12 Conditionals
A conditional capability is provided within SNMAKE by the !IFDEF...
!ELSE... !ENDIF construct, providing the ability to test for macro
definitions.

Example 1

If the special macro DEBUGSTR is set i.e. debug mode is on, the
debugger will be invoked every time SNMAKE is invoked with this
project file. The !ENDIF command is required to terminate the !IFDEF
call. SNMAKE will generate an error if it reaches the end of the project
file with an unbalanced number of calls to !IFDEF and !ENDIF.

!ifdef(debugstr)
SRC_DB=/sdb
!else
SRC_DB=""
!endif

!ifdef(debugstr)
t1:; prog1.sh

snasmsh2 $! /sdb prog1.sh,t1:prog1
snbugsh2 -t1:prog1

!else
t1:; prog1.sh

snasmsh2 $! prog1.sh,t1:
!endif

Example 2

This is a more efficient implementation of Example 1.

t1:;prog1.sh
snasmsh2 $! $(SRC_DB) prog1.sh,t1:prog1

!ifdef(debugstr)
snbugsh2 -t1:prog1

!endif

SNMAKE

9-12

9.3 Command-line Syntax
SNMAKE can be invoked from the command-line using the following
syntax:

snmake [Switches] [ProjectFile] [ErrorFile]

Invoking SNMAKE with no arguments causes it to look for a project
file called ‘MAKEFILE’ and process that. The optional ProjectFile
parameter specifies an alternative project file name. If ErrorFile is
specified all error information will be output to that file.

9.3.1 Switches
SNMAKE accepts five switches from the command-line.

Switch Description

b Build all. All rules carried out regardless.

d Set debug mode. Sets the special macro $!. Only
of use if invoking SNASM2 from the project
file.

e Name=Exp Pass a macro definition into SNMAKE. Sets up a
macro Name which will expand to Exp.

i Set info mode. As above.

p Project mode. This forces SNMAKE to treat
make files as project files i.e. as if invoked from
within an editor. If no make file name is
specified SNMAKE will default to
MAKEFILE.PRJ. In project mode all output
from SNMAKE goes to a file called
SNMK.ERR, any error output from the
programs invoked by SNMAKE will appear on-
sceen unless an error file is specified.

q Quiet mode. No echoing is done as SNMAKE
proceeds.

Table 9-2. SNMAKE command-line switches.

Command-line Syntax

9-13

9.3.2 Example
The following example produces a file called TEST1.COF from the
source files E:SRC1.SH E:SRC2.SH . Text in this style is comment text
added to aid the reader and is not part of the SNMAKE syntax.

#file to create test1.cof

This text will appear in the project file select menu

[SnMake]

SNMAKE in project mode starts reading at this label
src1.cof; e:\src1.sh

snasmsh2 $! /l /sdb e:\src1.sh,src1.cof

src2.cof; e:\src2.sh
snasmsh2 $! /l /sdb e:\src2.sh,src2.cof

test1.cof; src1.cof src2.cof
snasmsh2 $! src1.cof+src2.cof,test1.cof

!ifdef(debugstr)
snbugsh2 -t1b:test1.cof

!endif

[Debug]

SNMAKE stops reading here.
snbugsh2 -t1b:test1.cof

Debugger is invoked using this string

[Eval]
evalsym /v$$$ test1.cof

Expression evaluator is invoked with this string

SNMAKE

9-14

This is the only information this page contains.

Running SNLIB

10-1

10 SNLIB
SNLIB is a utility program for creating and maintaining object module
libraries (‘libraries’). A library is a file containing several object
modules. These libraries can be searched by the assembling linker if it
cannot find a symbol in the object files. If the assembling linker finds
that the external symbol it needs is defined in a library module then the
module will be extracted and linked with the object modules.

10.1 Running SNLIB

10.1.1 Command-line Syntax

snlib [- |/]Switches Libraryfile Modules

Switch Description

a Add. Add modules to library

d Delete. Deletes modules from library.

l List. Lists modules in library.

u Update. Updates modules in library.

x Extract. Extracts modules from library.

Table 10-1. SNLIB command-line switches.

SNLIB

10-2

This is the only information this page contains.

About SN2G

11-1

11 SN2G

12.1 About SN2G
SN2G is a utility program for converting SNASM2 COFF object
modules into GNU format COFF object modules. Due to some of the
extensions that the SNASM2 assembler uses not all objects can be
converted. In such cases the converter will provide as much
information as it can as to why the object could not be converted.

The converter exists because the GNU linker, ld, cannot link SNASM2
object files. This prevents you from using the SNASM2 assembler
with the GNU linker. Furthermore, if you use the SNASM2 linker with
GNU object files, you will lose your C structure browse information.
This situation is undesirable as this information can be vital for
debugging C programs. To ease this situation, use SN2G.EXE to
convert your assembler objects into GNU ld format and link using ld.
This provides the best of both worlds by enabling you to use the
SNASM2 assembler with the GNU linker.

12.2 Command-line Syntax
The command-line syntax for SN2G is as follows:

s2g [[-|/]Switch] Infile Outfile

where:

Infile is the SNASM2 object file to convert.

Outfile is the converted object file.

Switch is one of

v Verbose mode.
d Produce error information.
h Provide this help message.

SN2G

11-2

Example

As an example, you may use the converter in the following manner

c:\> gcc -g -c test.c -o test.o [return]

c:\> snasmsh2 /l test2.asm,test2.cof [return]

c:\> s2g test2.cof test2.o [return]

c:\> ld -g test.o test2.o -o test.x -Ttest.cmd [return]

12.3 Considerations and Limitations
SN2G can convert relocations of four byte quantities. This means that
most symbol patches work. SN2G has to convert SNASM2’s ‘section
relative’ relocates into symbol relative relocates. This is achieved by
putting a symbol at the start of each section, and relocating with that
symbol.

SN2G also converts symbols. All symbols are converted to address
labels. They contain no specific type information.

There are several features that cannot be converted because they are
either not supported by the GNU linker or have no meaning in that
context. These features are described below.

Complex Expressions

Complex expressions cannot be converted. For example, if an
expression involving two symbols cannot be evaluated by the
assembler then SN2G will output an expression for the relocation.
Currently, these expressions are not converted. It is not known if it is
possible to convert complex ecpressions. The work around is to re-
write the code so that the symbols are no longer one expression. For
example, consider the following:

mov.l #extern_1+extern_2,r1;this cannot be converted

Considerations and Limitations

11-3

The work around is to change the code to:

mov.l #extern_1,r1
mov.l #extern_2,r2
add r2,r1

Groups

All groups are discarded completely during conversion. This is
becuase GNU has no concept of groups in GNU. It may be necessary
to pass on some of the group attributes to their relevant sections at a
later date. This means that assigning ORGs etc. to groups has no
meaning. Register setting information, and file information is also
discarded.

SNASM2 Specifics

Various facilities within SNASM2 will no longer work and will cause
conversion to fail. OBJLIMIT and OBJBASE objbase are resolved as
special expressions, and therefore cannot be converted.

Also, when a complex expression appears in a piece of source such as

mov.l #objlimit,r1
...
lits

then the error is reported as being on the ‘LITS’ line. This is actually
correct, as this is where the complex expression is actually generated
by the assembler. At the time of writing there is nothing that can be
done about this message. The information about the original line is not
present.

SN2G

11-4

This is the only information this page contains.

5Appendix
Hitachi Assembler Compatibility

6

Introduction

A-1

A Hitachi Assembler Compatibility

A.1 Introduction
This appendix describes the differences between the Hitachi syntax
and the syntax supported by the SNASM2 assembler using the
HITACHI.MAC compatibility file.

Where differences exist between Hitachi and SNASM2 syntax, cross
references to the relevant places the rest of this manual. Where no
reference is made to Hitachi syntax it can be assumed the syntax is
fully supported by the SNASM2 assembler

To use Hitachi syntax first make sure that the HITACHI.MAC file is in
the same directory as the SNASM2 SH2 assembler and then specify
the [- |/]hitachi command-line switch each time you invoke the
assembler.

A.1.1 Using Hitachi Syntax
See also

section 3.1,
“Command-

line Use”.

The SNASM2 assembler provides support for Hitachi syntax both in
the assembler itself and via a compatibility file, HITACHI.MAC. The
SNASM2 assembler provides support for e.g. the Hitachi integer
constant syntax e.g. H’123 for hexadecimal numbers.

The HITACHI.MAC file contains a set of macro definitions and
aliases for SNASM2 directives. To use the facilities in the
HITACHI.MAC file, use the command-line switch: [- |/]hitachi ;
this causes the SNASM2 assembler to pre-read the Hitachi macros.

Note This appendix does not attempt to teach you how to use the
SNASM2 assembler and assumes that you are familiar with the
Hitachi assembler and its syntax.

For information concerning the Hitachi syntax see the supplied SH
Series Cross Assembler User’s Manual (P/N SH0700ASCU1SE).

Hitachi Assembler Compatibility

A-2

A.1.2 Porting Hitachi Code to SNASM2
Complete projects built using the Hitachi assembler and linker will
need some source level changes to allow them to be built using the
SNASM2 assembler and to generate a new SNASM2 link file. The
compatibility features aim to minimise the changes needed to source
files that have been successfully assembled using the Hitachi tools;
they do not attempt to provide 100% compatibility.

Overview of Syntax Differences

A-3

A.2 Overview of Syntax Differences
There are three major areas where the syntax of the Hitachi and
SNASM2 assemblers differ: Automatic literal pool generation; the line
continuation character; and conditional assembly functions. These
areas are now described in turn.

A.2.1 Automatic literal pool generation
The Hitachi assembler automatically emits the literal pool after the slot
instruction following a BRA, JMP, RTS or RTE instruction. The
SNASM2 assembler does not emit the literal pool until explicitly
requested to do so. To emit the literal pool issue a .LITS directive
immediately after the slot instruction of a BRA, JMP, RTS or RTE
instruction. Note that .LITS will always emit the literal pool regardless
of where it is invoked from.

A.2.2 The Line Continuation Character
See also

Section 4.2,
“Statement

Format”

In the Hitachi assembler, long lines can be continued on the next
source line by placing a ‘+’ character as the first character on the
continuation line. In contrast, SNASM2 requires a ‘&’ character as the
last character of a line that is to be continued.

A.2.3 Conditional Assembly Functions
See also
Section

6.3.2,
“Conditional

Assembly
(IFxx)

Macros”

The Hitachi assembler uses a preprocessor to handle the conditional
assembly functions. The preprocessor requires that all variables used in
such constructs to be prefixed with ‘\&’. In contrast, the SNASM2
conditional assembly functions are part of the assembler itself and so
variables used in them do not need any prefix.

Hitachi Assembler Compatibility

A-4

A.3 Program Elements
This section describes in detail the differences between Hitachi and
SNASM2 syntax. Where no reference is made to Hitachi syntax it can
be assumed the syntax is fully supported by the SNASM2 assembler.

A.3.1 Continuation Lines
Continuation lines started with ‘+’ are not supported by the SNASM2
assembler. Hitachi source statements must be changed so that either
they do not require continuation lines or the ‘&’ character placed at the
end of a line to signify that the next line is a continuation of the
previous one. The maximum length of a source statement in SNASM2,
including all continuation lines is 1024 characters. Note also that in
SNASM2, comments cannot be embedded in a source line that is to be
continued. For example, the following Hitachi source statements:

.DATA.L H’FFFF0000
+ H’FF00FF00 ; Comments allowed here
+ H’FFFFFFFF

should be recoded as

.DATA.L H’FFFF0000 &
H’FF00FF00 &
H’FFFFFFFF

or, to allow the use of comments, as

.DATA.L H’FFFF0000

.DATA.L H’FF00FF00 ; Comments allowed here

.DATA.L H’FFFFFFFF

A.3.2 Reserved Words
The STARTOF and SIZEOF operators are not implemetend.In
SNASM2, use the SECT and SECTSIZE functions to obtain a
sections’ start address and size respectively. For more information, see
“Expressions” below.

A.3.3 Coding of Symbols
Do not use the ‘$’ character in symbols.

Program Elements

A-5

A.3.4 Expressions

Exclusive OR Operator

In SNASM2, the Exclusive OR (XOR) operator is represented by the
‘^’ character; Hitachi syntax uses the ‘~’ character.

STARTOF and SIZEOF

See also
Section

7.3.7,
“Section

Functions”

In SNASM2, the Hitachi STARTOF and SIZEOF operators are
available as the SECT and SECTSIZE functions respectively. Source
statements containing the STARTOF operator, such as:

.DATA.L startof code

should be recoded as

.DATA.L sect(code)

Similarly, statements containing the SIZEOF operator, such as:

.DATA.L sizeof code

should be recoded as

.DATA.L sizeof(code)

A.3.5 Sections
See also

Section 7.3,
“Sections”

The SNASM2 assembler does not support the common section facility.
Programs using this facility will need to be recoded to run under
SNASM2.

The HITACHI.MAC compatibility file provides facilities to support all
variants of the. SECTION directive with the exception of the
COMMON section type.

The SNASM2 assembler does not validate the constructs allowed in
each of the section types.

Hitachi Assembler Compatibility

A-6

In DUMMY sections, which the Hitachi assembler uses to define
structures, .RES directives are redefined to generate the SNASM2 RS
constructs. No checks are made to ensure that no other assembler
constructs are used inside DUMMY sections.

A.3.6 The .REG directive
In SNASM2 syntax, do not parenthesise the register name operand in
the .REG directive.

A.3.7 Data Definition and Reservation.

DC.L

See also
Section

5.5.1, “DC”

HITACHI.MAC replaces the default SNASM2 DC.L directive with
one that aligns the data being defined on a long word boundary.

Out of Range Parameters for DC, DCB, DB and DW

The SNASM2 assembler has a Truncate option that, when On (t+),
will truncate out of range parameters for the DB, DC, DCB and DW
directives. If this option is not enabled (t- , the default), out of range
parameters for these directives will generate an error.

Maximum Data Size for .DATB

The SNASM2 assembler has a command-line switch that controls the
maximum data size that can be generated by a single data definition
directive. The purpose of this switch is to prevent coding errors
generating vast amounts of data. The syntax is:

[- |/]dmax Num

Num is in the range 1-32 where dmax=2Num. By default Num is set to
16 (i.e. dmax=65536) allowing up to 64K of space to be reserved by
one data definition statement. The assembler will generate an error if
the size exceeds 2dmax.

Appending Control Characters to Strings

In SNASM2 syntax, do not use angle brackets to enclose a control
character when appending it to a string in, for example, the .SDATA
directive. For example, the following Hitachi syntax statement:

Program Elements

A-7

.SDATA “abab”<H’07>

should be recoded using SNASM2 syntax as follows:

.SDATA “abab”,H’07

A.3.8 Object Module Assembler Directives

.OUTPUT

See also
Section3.1,
“Command-

line Use”

The SNASM2 assembler does not support the Hitachi .OUTPUT
directive and its use will cause the assembler to generate an error. In
SNASM2, specification of the output file is performed on the
command-line when invoking the assembler.

.DEBUG

The SNASM2 assembler does not support the Hitachi .DEBUG
directive and its use will cause the assembler to generate an error. In
SNASM2, use the [- |/]sdb command-line switch to cause source
debug information to be output.

A.3.9 Assembly Listing Directives

.PRINT, .LIST, .FORM, .HEADING, .PAGE, .SPACE

The .PRINT, .LIST, .FORM, .HEADING, .PAGE and .SPACE
directives are not supported and generate errors if they are
encountered.

A.3.10 Object Module Name Setting

.PROGRAM

The .PROGRAM directive is not supported; the name of the module or
object file is specified on the SNASM2 command-line.

A.3.11 File Inclusion Function
In SNASM2, if a filename is specified with a root name but no
extension the assembler will search for a file of that name.

Hitachi Assembler Compatibility

A-8

If such a file cannot be found the assembler will search for a file with
the specified root name and one of the extensions given below in the
following order.

.ASM

.S

.COF

.O

.LIB

The SNASM2 assembler will use the first file found; the extension
specifies the type of file.

A.3.12 Conditional Assembly Functions

Prefixing Conditional Assembly Functions

See also
Section

6.3.2,
“Conditional

Assembly
(IFxx)

Macros”.

The Hitachi assembler uses a preprocessor to implement conditional
assembly functions; this requires preprocessor symbols to be prefixed
with ‘/&’. In SNASM2, conditional assembly is implemented in the
assembler removing the requirement for such prefixes.

The SNASM2 assembler, via the HITACHI.MAC file, translates the
Hitachi conditional assembly directives but will not rename any
prefixed symbols used in such constructs; these must be recoded to use
unique symbols not prefixed with ‘/&’.

.ASSIGNA and .ASSIGNC

The Hitachi .ASSIGNA and .ASSIGNC directives are not
implemented and will cause the assembler to generate an error if used.

A.3.13 Macro Function
See also

Section 6,
“Macros”.

The macro facilities of the Hitachi and SNASM2 assemblers are
similar but there are two Hitachi features that SNASM2 does not
support: the ability to specify a default value for macro parameters; and
the ability to specify parameter values by name. Using either construct
will cause the SNASM2 assembler to generate an error.

Program Elements

A-9

A.3.14 Character String Manipulation Functions

.LEN, .INSTR, and .INSTR

See also
Section 5.11,
“Manipulating

 Strings”.

The Hitachi macro character string manipulation functions .LEN,
.INSTR and .SUBSTR are supported with different syntax in
SNASM2. The Hitachi .LEN, .INSTR and .SUBSTR functions should
be recoded using the SNASM2 functions STRLEN, INSTR and
SUBSTR respectively.

A.3.15 Automatic Literal Pool Generation Function
SNASM2 treats literals and literal pools in a similar way to the Hitachi
assembler.

Literals that can be evaluated and whose values are within the available
bounds are placed in the instruction itself. Literals whose value is not
within the available bounds are placed in the next literal pool.

Literals which do not evaluate, because they forward reference a
symbol for example, are placed in the literal pool unless the literal is
introduced with a ‘##’. In this case they are forced into the instruction
and will generate an error if the eventual literal value exceeds the
bounds available.

Automatic Emission of the Literal Pool

The Hitachi assembler automatically emits the literal pool after the slot
instruction following a BRA, JMP, RTS or RTE instruction. The
SNASM2 assembler does not emit the literal pool until explicitly
requested to do so. To emit the literal pool issue a .LITS directive
immediately after the slot instruction of a BRA, JMP, RTS or RTE
instruction. Note that .LITS will always emit the literal pool regardless
of where it is invoked from.

.POOL

The Hitachi .POOL directive is supported via a macro definition and
causes a branch, a NOP and the current literal pool to be output. Note
that is the literal pool is empty a branch and a NOP will still be
generated by the SNASM2 assembler.

Hitachi Assembler Compatibility

A-10

For those Hitachi directives not supported , the HITACHI.MAC
compatibility file generates an error using the _.MSG1 macro. If
desired, this macro can be edited so that it issues a warning instead.

Index

Index-1

Index
Symbols
* 4-26, 4-27, 6-8
@ 4-26, 4-27
_ 6-10
\# 4-31
\$ 4-31
* 6-8
\@ 6-10
\0 6-10

A
Addressing modes 4-36
ADDRMODE function 4-36

addressing modes 4-36
ALIAS directive 5-3
.ALIGN directive 5-27
ALIGNMENT function 4-37, 7-13
Assembler

command file 3-13
command-line syntax 3-3
filenames 3-6 to 3-7

default extensions 3-6, 3-7
ignoring specified files 3-8

quirks 3-12
running 3-3
Running from within an editor 2-2
switches 3-8 to 3-11

.ASSIGN directive
See SET directive

B
Breakpoints 8-57 to 8-66

clearing 8-57
conditional 8-60
configuring 8-57
as counters 8-60
halting 8-61
logging 8-61
setting 8-57
single step 8-65
step into 8-66
step over 8-65

suspending 8-60
tracing 8-65
unconditional 8-60
unstep 8-66

Breakpoints window 8-53

C
CASE and ENDCASE directives 5-46
CNOP directive 5-28
Code windows 8-30 to 8-37
Command file

linking 5-76, 5-86
Conditional assembly 5-41 to 5-54

CASE and ENDCASE directives 5-46
DO and UNTIL directives 5-53
.END directive

See END directive
END directive 5-42
IF...ELSE...ELSEIF and ENDIF

directives 5-43
IFxx macros 6-16
REPT and ENDR directives 5-48
WHILE and ENDW directives 5-51

Constants 4-21 to 4-29
assembly location counter. See current

location counter
assembly time 4-25
character 4-24
current location counter 4-26
integer 4-22
pre-defined 4-27 to 4-29
strings 4-30
turning numbers into strings 4-31

_CURRENT_FILE 4-28
_CURRENT_LINE 4-28
Current location counter 4-26

D
Data

defining 5-16 to 5-24
defining initialised 5-16 to 5-23

DATA directive 5-22
DATASIZE directive 5-21

Index

Index-2

DCB directive 5-18
DC directive 5-16
HEX directive 5-20
IEEE32 directive 5-23
IEEE64 directive 5-23
out of range parameters 5-19

reserving space
DS directive 5-24

DATA directive 5-22
DATASIZE directive 5-21
_DAY 4-28
DCB directive 5-18

out of range parameters 5-19
DC directive 5-16

out of range parameters 5-19
Debugger

about 8-1
Breakpoints window 8-53
Code windows 8-30 to 8-37
command-line syntax 8-2
Disassembly window 8-36
exiting 8-19
File Viewer window 8-55
interface 8-13 to 8-15
Log window 8-54
Main window 8-16 to 8-29

Execution menu 8-25
File menu 8-17
Session menu 8-20
Target menu 8-22
Windows menu 8-29

Memory window 8-40 to 8-41
Mixed window 8-31
Program window 8-48
Registers window 8-38
running 8-2 to 8-12
session files 8-8

memory ranges 8-9
window attributes 8-11

Source window 8-37
target

discarding 8-22
monitoring 8-24
resetting processor 8-27
restoring registers 8-27
saving registers 8-27

selecting 8-13
stopping 8-27
updating 8-23

Watch window 8-46
structure browsing 8-47

windows
working with 8-14

DEF function 4-37
Directives

changing names 5-3
See also individual entries

DISABLE directive 5-3
Disassembly window 8-36
DO and UNTIL directives 5-53
DS directive 5-24

E
.END directive

See END directive
END directive 5-42
ENDM directive 6-2
Equates 5-5 to 5-15

.ASSIGN directive
See SET directive

.EQU directive
See EQU directive

EQU directive 5-5
EQUR directive 5-13
EQUS directive 5-7
permanent 5-5

forward references 5-6, 5-21, 5-24,
5-28

redefinable 5-6
.REG directive

See EQUR directive
REG directive 5-15
register 5-13 to 5-15
RS 5-10 to 5-13
SET directive 5-6
string 5-7

.EQU directive
See EQU directive

EQU directive 4-19, 4-25, 5-5
EQUR directive 4-19, 5-13
EQUS directive 4-19, 5-7
Errors

Index

Index-3

FAIL directive 5-71
INFORM directive 5-70
user generated 5-70 to 5-71

EVEN directive 5-26
.EXPORT directive

See EXPORT directive
EXPORT directive 5-73
Expressions 4-33 to 4-43, 8-67 to 8-78

C++ 8-67
format specification 8-73
format specifier character 8-74
formatting 8-72
functions 4-36 to 4-43
operator precedence 4-34
pointer modifier 8-75
repeat modifier 8-78
width modifier 8-76

F
FAIL directive 5-71
_FILENAME 4-28
Files

including 5-34 to 5-38
INCBIN 5-37
INCLUDE directive 5-34

FILESIZE function 4-37
File Viewer window 8-55
Forward references

permanent equates 5-6, 5-21, 5-24,
5-28

Functions 4-36 to 4-43
ADDRMODE 4-36

addressing modes 4-36
ALIGNMENT 4-37
DEF 4-37
FILESIZE 4-37
INSTR 4-40
INSTRI 4-40
LINKEDSIZE 4-40, 7-14, 7-20
NARG 4-40
OBJBASE 4-38, 7-13, 7-20
OBJLIMIT 4-38, 7-14, 7-20
OFFSET 4-40
ORGBASE 4-38, 7-13, 7-20
ORGLIMIT 4-38, 7-14, 7-20
REF 4-41

for sections and groups 7-4
SIZE 4-39, 7-14, 7-20
SQRT 4-41
STRCMP 4-41
STRICMP 4-41
STRLEN 4-41
TYPE 4-42

G
.GLOBAL directive

See GLOBAL directive
GLOBAL directive 5-76
Groups 7-1

alignment of 7-18
associated directives

summary 7-3
associated functions

summary 7-4
attributes of 7-15
current size

See SIZE function
defining 7-3
functions 7-20
initialised 7-2
linked size

See LINKEDSIZE function
logical end address

See OBJLIMIT function
logical starting address

See OBJBASE function
overlaying 7-19
physical end address

See ORGLIMIT function
physical starting address

See ORGBASE function
and sections 7-1 to 7-20
starting address of 7-16
uninitialised 7-2
writing to file 7-18

H
HEX directive 5-20
_HOURS 4-28

Index

Index-4

I
IEEE32 directive 5-23
IEEE64 directive 5-23
IF...ELSE..ELSEIF and ENDIF directives

5-43
IFxx macros 6-16
.IMPORT directive

See IMPORT directive
IMPORT directive 5-74
INCBIN directive 5-37
INCLUDE directive 5-34
INFORM directive 5-70
INSTR function 4-40, 5-56
INSTRI function 4-40, 5-56

L
Labels 4-16 to 4-20

and symbols 4-16 to 4-20
local 4-16, 4-17

in macros 6-21
scope 4-17, 4-19

LINKEDSIZE function 4-40, 7-14, 7-20
Linking 5-72 to 5-86

command file 5-86
.EXPORT directive

See EXPORT directive
EXPORT directive 5-73
.GLOBAL directive

See GLOBAL directive
GLOBAL directive 5-76
guide to 5-76
.IMPORT directive

See IMPORT directive
IMPORT directive 5-74
PUBLIC directive 5-75

LIST directive 5-32
Listings 5-32 to 5-33

LIST directive 5-32
NOLIST directive 5-32

Literal pools 4-6, A-9 to A-10
LOCAL directive 6-21
Local labels 4-16, 4-17

in macros 6-21
scope 4-17, 4-19
scope in modules 5-58

Log window 8-54

M
MACRO directive 6-2
Macros 6-1 to 6-25

advanced features 6-17 to 6-25
extended parameters 6-17
local lables 6-21
PUSHP and POPP directives 6-23

defining 6-2
ENDM directive 6-2
MACRO directive 6-2

editor macros for SNMAKE 9-2
ENDM directive 6-2
expanding 6-3

MEXIT diective 6-3
IFxx macros 6-16
importing labels 6-8
introducing 6-2 to 6-4
invoking 6-3
local labels in 6-21

LOCAL directive 6-21
MACRO directive 6-2
MACROS directive 6-14
memory management 6-24
MEXIT directive 6-3
parameters 6-5 to 6-13

extended 6-17
labels as 6-8
named 6-6
numbered 6-5
special 6-10
variable numbers of 6-7

PURGE directive 6-24
short macros 6-14 to 6-16

MACROS directive 6-14
MACROS directive 6-14
Make file. See Project file
Memory ranges 8-9
Memory window 8-40 to 8-41
MEXIT directive 6-3
_MINUTES 4-28
Mixed window 8-31
MODEND directive 5-58
MODULE directive 5-58
Modules 5-58 to 5-61

Index

Index-5

MODEND directive 5-58
MODULE directive 5-58
scope of local labels in 5-58

_MONTH 4-28

N
NARG function 4-40
NARG symbol 4-28, 6-7, 6-17
NOLIST directive 5-32
Numbers

turning into strings 4-31

O
OBJBASE function 4-38, 7-13, 7-20
OBJ directive 5-29
OBJEND directive 5-29
OBJLIMIT function 4-38, 7-14, 7-20
OBJLMIT function 7-20
OFFSET function 4-40, 7-12
Operator precedence 4-34
OPT directive 5-68
Optimisations 5-67

changing in source code 5-69
OPT directive 5-68
PUSHO and POPO directives 5-69
setting in source code 5-68

Options 5-62 to 5-65
changing in source code 5-69
setting in source code 5-68

ORGBASE function 4-38, 7-13, 7-20
ORG directive 5-25
ORGLIMIT function 4-38, 7-14, 7-20

P
POPO directive 5-69
POPP directive 6-23
POPS directive 7-10
Program counter

changing 5-25 to 5-29
.ALIGN directive 5-27
CNOP directive 5-28
EVEN directive 5-26
OBJ directive 5-29
OBJEND directive 5-29

ORG directive 5-25
Program window 8-48
Project files 2-1, 9-1, 9-3 to 9-11

comments 9-8
creating 9-3
defining dependencies 9-6
defining explicit rules 9-6
defining implicit rules 9-7
defining targets 9-4
implicit targets

defining rules for 9-8
line continuation 9-8
macros 9-9
special targets 9-4

PUBLIC directive 5-75
PURGE directive 6-24
PUSHO directive 5-69
PUSHP directive 6-23
PUSHS directive 7-10

Q
Quirks 3-12

R
_RADIX 4-27
_RCOUNT 4-27
REF function 4-41
.REG directive

See EQUR directive
REG directive 5-15
Registers window 8-38
REGS directive 5-39
REPT and ENDR directives 5-48
REPT directive 5-48
__RS variable 4-27, 5-10
RS directive 5-10
RSRESET directive 5-10
RSSET directive 5-10

S
_SECONDS 4-28
SECT function 7-12
SECTION directive 7-5
Sections 7-5 to 7-20

Index

Index-6

ALIGNMENT function 7-13
alignment of 7-7
allocating to groups 7-8
and groups

introduction to 7-2 to 7-4
associated directives

summary 7-3
associated functions 7-14 to 7-20

summary 7-4
attributes of 7-8
base address of 7-12
changing between 7-10
current size

See SIZE function
Fragments 7-12
and groups 7-1 to 7-20
linked size

See LINKEDSIZE function
logical end address

See OBJLIMIT function
logical starting address

See OBJBASE function
name of 7-6
OFFSET function 7-12
offset of symbols in 7-12
physical end address

See ORGLIMIT function
physical starting address

See ORGBASE function
SECT function 7-12
symbol offset from alignment of 7-13

Session files 8-8
memory ranges 8-9
window attributes 8-11

SET directive 4-19, 5-6
SHIFT directive 6-7, 6-17
SIZE function 4-39, 7-14, 7-20
SNASM2

main menu 2-2
SNLIB utility 10-1

running 10-1
command-line syntax 10-1

SNMAKE utility 9-1
command-line syntax 9-12 to 9-13

switches 9-12
editor macros for 9-2

project files 9-3 to 9-11
Source window 8-37
SQRT function 4-41
STRCMP function 4-41, 5-55
STRICMP function 4-41, 5-55
Strings 4-30

comparing 5-55
determining the length of 5-55
equating substrings to a symbol 5-57
INSTR function 5-56
INTRI function 5-56
manipulating 5-55 to 5-57
STRCMP function 5-55
STRICMP function 5-55
STRLEN function 5-55
SUBSTR function 5-57
sub-strings 5-56

STRLEN function 4-41, 5-55
Structure browsing 8-47
SUBSTR function 5-57
Symbols

and periods 4-20
Syntax

source code 4-1
statement format 4-13

T
Target

discarding 8-22
monitoring 8-24
registers

restoring 8-27
saving 8-27

resetting processor 8-27
selecting 8-13
setting parameters for 5-39

REGS directive 5-39
stopping 8-27
updating 8-23

Tracing 8-65
single step 8-65
step into 8-66
step over 8-65
unstep 8-66

TYPE function 4-42

Index

Index-7

U
Utilities

SNLIB 10-1
SNMAKE 9-1

W
Warnings

FAIL directive 5-71
INFORM directive 5-70
user generated 5-70 to 5-71

Watch window 8-46
Structure browsing 8-47

_WEEKDAY 4-28
WHILE and ENDW directives 5-51

Y
_YEAR 4-27

Index

Index-8

	Contents
	Setup
	Environment
	The Assembler
	The Debugger
	Utilities
	Index
	Contents
	Setup
	1 Setup 1-1
	1.1 About the Hardware Setup 1-2
	1.2 CartDev Rev. B and Modified Saturn 1-6
	1.3 CartDev Rev. B and Saturn Programming Box 1-8
	1.4 Testing the Hardware Setup 1-13
	1.5 About the Software Setup 1-15
	1.6 Troubleshooting 1-18
	Environment
	2 The SNASM2 Environment 2-1
	2.1 The SNASM2 Main Menu 2-2
	The Assembler
	3 Running The Assembler 3-3
	3.1 Command-line Use 3-3
	4 Source Code Syntax 4-1
	4.1 Instruction Set 4-1
	4.2 Statement Format 4-13
	4.3 Labels and Symbols 4-16
	4.4 Constants 4-21
	4.5 Expressions 4-33
	5 Assembler Directives 5-1
	5.1 Overview 5-1
	5.2 Changing Directive Names 5-3
	5.3 Equates 5-5
	5.4 Defining Data 5-16
	5.5 Changing The Program Counter 5-25
	5.6 Listings 5-32
	5.7 Including Other Files 5-34
	5.8 Setting Target Parameters 5-39
	5.9 Conditional Assembly 5-41
	5.10 Manipulating Strings 5-55
	5.11 Modules 5-58
	5.12 Options and 68000 Optimisations 5-62
	5.13 Custom Errors and Warnings 5-70
	5.14 Linking 5-72
	6 Macros 6-1
	6.1 Introducing Macros 6-2
	6.2 Macro Parameters 6-5
	6.3 Short Macros 6-14
	6.4 Advanced Macro Features 6-17
	7 Sections and Groups 7-1
	7.1 Overview 7-1
	7.2 Introduction to Sections and Groups 7-2
	7.3 Sections 7-5
	7.4 Groups 7-15
	The Debugger
	8 The Debugger 8-1
	8.1 About the Debugger 8-1
	8.2 Running the Debugger 8-2
	8.3 The Debugger Interface 8-13
	8.4 The Main Window 8-16
	8.5 Code Windows 8-30
	8.6 The Registers Window 8-38
	8.7 The Memory Window 8-40
	8.8 The Watch Window 8-46
	8.9 The Program Window 8-48
	8.10 The Breakpoints Window 8-53
	8.11 The Log Window 8-54
	8.12 The File Viewer Window 8-55
	8.13 The Local Vars Window 8-56
	8.14 Breakpoints 8-57
	8.15 Expressions 8-67
	8.16 Expression Formatting 8-72
	Utilities
	9 SNMAKE 9-1
	9.1 Editor Macros for SNMAKE 9-2
	9.2 Project Files 9-3
	9.3 Command-line Syntax 9-12
	10 SNLIB 10-1
	10.1 Running SNLIB 10-1
	11 SN2G 11-1
	12.1 About SN2G 11-1
	12.2 Command-line Syntax 11-1
	12.3 Considerations and Limitations 11-2
	Appendix
	A Hitachi Assembler Compatibility A-1
	A.1 Introduction A-1
	A.2 Overview of Syntax Differences A-3
	A.3 Program Elements A-4
	List of Figures
	List of Tables
	About the Hardware Setup
	CartDev Rev. B and Modified Saturn
	CartDev Rev. B and Saturn Programming Box
	Testing the Hardware Setup
	About the Software Setup
	Troubleshooting
	1 Setup
	Important
	1.1 About the Hardware Setup
	1.1.1 If You Already Have a SCSI Adapter
	1.1.2 Configuring the SCSI Adapter
	Switch Block Settings
	SCSISelect Settings
	Example Configuration

	1.1.3 Configuring the CartDev
	SCSI ID
	Termination

	1.1.4 CartDev Power On LED Sequence

	1.2 CartDev Rev. B and Modified Saturn
	1.2.1 Setting up the Hardware
	Figure 1-1. CartDev Rev. B and Modified Saturn

	1.3 CartDev Rev. B and Saturn Programming Box
	1.3.1 Setting up the Hardware
	Figure 1-1. CartDev Rev. B and Saturn Programming ...

	1.3.2 Programming Box NMI Cable Connection
	Figure 1-1. Removing the screws from the Programmi...
	Figure 1-2. Removing the Programming Box cover
	Figure 1-3. Connecting the NMI Cable

	1.4 Testing the Hardware Setup
	1.4.1 Hardware Setup Test

	1.5 About the Software Setup
	1.5.1 Before You Start
	1.5.2 Installing the SNASM2 Software
	Requirements
	Installation

	1.5.3 Changes to AUTOEXEC.BAT
	General
	Brief Variables
	Multi-Edit

	1.6 Troubleshooting
	Table 1-1. Troubleshooting the hardware
	The SNASM2 Main Menu

	2 The SNASM2 Environment
	Project Files
	2.1 The SNASM2 Main Menu
	Table 2-1. SNASM2 Main Menu keys. * Multi Edit onl...
	Make (Alt+F10) (Alt+F8 in Multi-Edit)
	Select Project File (Ctrl+F9)
	Debug (Ctrl+F10)
	Set Debug Mode (Ctrl+D)
	Evaluate (Ctrl+E)
	Jump to label (Ctrl+G)
	Undo last label (Ctrl+F)
	Save all buffers (Alt+S)
	Error Window (Ctrl+Q)
	Next Error (Ctrl+N)
	Running The Assembler
	Source Code Syntax
	Assembler Directives
	Macros
	Sections and Groups

	The Assembler
	3 Running The Assembler
	3.1 Command-line Use
	3.1.1 Command-line Syntax
	Important
	Example 1
	Example 1
	Example 2
	Example 2
	Example 3
	Example 3
	Example 4

	3.1.2 File Extensions
	Table 3-1. SH2 assembler filenames and default ext...
	Table 3-2. 68000 assembler filenames and default e...
	Source Filename Extensions
	Ignoring Specified Files
	Concatenating Map and List Files

	3.1.3 Switches
	Table 3-3. Assembler command-line switches.

	3.1.4 68000 Quirks
	Table 3-4. Assembler 68000 command-line quirks.

	3.1.5 Assembler Command Files
	Example
	Example

	4 Source Code Syntax
	4.1 Instruction Set
	Table 4-1. SNASM2 SH2 Instruction Set
	Table 4-1. SNASM2 68000 Instruction Set.
	4.1.1 SNASMSH2 Addressing Modes
	Table 4-1. Addressing Modes

	4.1.2 68000 Addressing Modes
	Table 4-1. Addressing Modes

	4.1.3 Literal Pools
	LITS
	Syntax
	The RISC Option
	Example

	4.2 Statement Format
	White Space
	Comment Lines
	Line Continuation Character
	Example
	4.2.1 Changing the Processor Mode
	Syntax

	4.3 Labels and Symbols
	4.3.1 Labels
	4.3.2 Local Labels
	Example

	4.3.3 Scoping Local Labels
	Example

	4.3.4 Symbols and Periods

	4.4 Constants
	4.4.1 Integer Constants
	4.4.2 Character Constants
	4.4.3 Assembly Time Constants
	Example

	4.4.4 Current Location Counter
	Example 1
	Example 2
	Example 3

	4.4.5 Pre-defined Constants
	Renaming Pre-defined Constants
	Table 4-1. Pre-defined constants

	Example

	4.4.6 Strings
	Example

	4.4.7 Turning Numbers into Strings
	Example 1
	Example 2

	4.5 Expressions
	Example
	4.5.1 Operator Precedence
	Table 4-1. Operator precedence

	4.5.2 Functions
	ADDRMODE
	Table 4-1. Addressing modes used by ADDRMODE.

	ALIGNMENT
	Example
	DEF
	FILESIZE
	Example
	OBJBASE
	ORGBASE
	OBJLIMIT
	The OBJLIMIT function returns the last logical add...
	ORGLIMIT
	SIZE
	LINKEDSIZE
	The LINKEDSIZE function returns the final link tim...
	INSTR
	INSTRI
	NARG
	OFFSET
	REF
	SQRT
	STRCMP
	STRICMP
	STRLEN
	TYPE
	Table 4-1. Symbol types.

	Example

	5 Assembler Directives
	5.1 Overview
	About This Chapter

	5.2 Changing Directive Names
	5.2.1 ALIAS
	Syntax
	Example

	5.2.2 DISABLE
	Syntax
	Example

	5.3 Equates
	5.3.1 EQU (.EQU)
	Syntax
	Example

	5.3.2 SET (.ASSIGN)
	Syntax
	Example

	5.3.3 EQUS
	Syntax
	Example 1
	Example 2
	Example 3

	5.3.4 RS Equates
	Syntax
	Example 1
	Example 2
	Example 3
	Example 3

	5.3.5 Register Equates
	EQUR (.REG)
	Syntax
	Example 1
	Example 1
	Example 2
	Example 2
	REG
	Syntax
	Example 1
	Example 2

	5.4 Defining Data
	5.4.1 DC
	Syntax
	Example 1
	Example 2

	5.4.2 DCB
	Syntax
	Example
	Out of range parameters
	Example

	5.4.3 HEX
	Syntax
	Example

	5.4.4 DATASIZE
	Syntax
	Example

	5.4.5 DATA
	Syntax
	Example

	5.4.6 IEEE32 and IEEE64
	Syntax
	Example

	5.4.7 DS
	Syntax
	Example

	5.5 Changing The Program Counter
	5.5.1 ORG
	Syntax
	Example 1
	Example 1
	Example 2
	Example 2
	Example 3

	5.5.2 EVEN
	Syntax
	Example 1
	Example 2

	5.5.3 .ALIGN
	Syntax
	Example

	5.5.4 CNOP
	Syntax
	Example 1
	Example 2

	5.5.5 OBJ and OBJEND
	Syntax
	Example
	Example

	5.6 Listings
	5.6.1 LIST and NOLIST
	Syntax
	Example 1
	Example 2

	5.7 Including Other Files
	5.7.1 The Standard INCLUDE File
	5.7.2 INCLUDE
	Syntax
	Example
	Example

	5.7.3 INCBIN
	Syntax
	Example 1
	Example 1
	Example 2

	5.8 Setting Target Parameters
	5.8.1 REGS
	Syntax
	Example

	5.9 Conditional Assembly
	5.9.1 END (.END)
	Syntax
	Example 1
	Example 2
	Example 2

	5.9.2 IF...ELSE...ELSEIF and ENDIF
	Syntax
	Example 1
	Example 2

	5.9.3 CASE... ENDCASE
	Syntax
	Example 1
	Example 2

	5.9.4 REPT... ENDR
	Syntax
	Example 1
	Example 1
	Example 2
	Example 3

	5.9.5 WHILE... ENDW
	Syntax
	Example
	Example

	5.9.6 DO... UNTIL
	Syntax
	Example
	Example

	5.10 Manipulating Strings
	5.10.1 STRLEN
	Example

	5.10.2 STRCMP and STRICMP
	Example

	5.10.3 INSTR and INSTRI
	Example

	5.10.4 SUBSTR
	Syntax
	Example

	5.11 Modules
	5.11.1 Local Labels in Modules
	Syntax
	Example 1
	Example 1
	Example 2
	Example 2

	5.12 Options and 68000 Optimisations
	5.12.1 Options
	Example
	Example

	5.12.2 68000 Optimisations
	Table 5-1. Assembler command-line optimisations.

	5.12.3 OPT
	Syntax
	Example

	5.12.4 PUSHO and POPO
	Syntax
	Example

	5.13 Custom Errors and Warnings
	5.13.1 INFORM
	Syntax
	Example 1
	Example 2

	5.13.2 FAIL

	5.14 Linking
	5.14.1 EXPORT (.EXPORT)
	Syntax
	Example
	Example

	5.14.2 IMPORT (.IMPORT)
	Syntax
	Example
	Example

	5.14.3 PUBLIC
	Syntax
	Example

	5.14.4 GLOBAL (.GLOBAL)
	Syntax

	5.14.5 Introduction to Linking
	5.14.6 The Command File

	6 Macros
	6.1 Introducing Macros
	6.1.1 Defining Macros
	Syntax

	6.1.2 Invoking a Macro
	6.1.3 Expanding a Macro
	Example 1
	Example 1
	Example 2

	6.2 Macro Parameters
	6.2.1 Numbered Parameters
	Example 1
	Example 2
	Example 3

	6.2.2 Named Parameters
	Example

	6.2.3 Variable Numbers of Parameters
	Syntax
	Example

	6.2.4 Labels as Parameters
	Example
	Example

	6.2.5 Special Parameters
	The \0 Parameter
	The _ Parameter
	The \@ Parameter
	Example 1
	Example 2
	Example 2
	Example 3
	Example 3
	Example 4
	Example 4

	6.3 Short Macros
	6.3.1 MACROS
	The MACROS directive is used to define a short mac...
	Syntax
	Example 1
	Example 2

	6.3.2 Conditional Assembly (IFxx) Macros
	Table 6-1. Conditional assembly macros.

	6.4 Advanced Macro Features
	6.4.1 Extended Parameters
	Example
	Example Continued
	Example

	6.4.2 Local Labels in Macros
	LOCAL
	Syntax
	Example 1
	Example 1
	Example 2
	Example 2

	6.4.3 PUSHP and POPP
	Syntax
	Example

	6.4.4 PURGE
	Syntax
	Example 1
	Example 2

	7 Sections and Groups
	7.1 Overview
	7.2 Introduction to Sections and Groups
	Figure 7-1. Partitioning target memory into logica...
	7.2.1 Section and Group Directives
	7.2.2 Section and Group Functions

	7.3 Sections
	7.3.1 SECTION
	Syntax
	Example

	7.3.2 Section Names
	Example

	7.3.3 Section Alignments
	Example

	7.3.4 Allocating Sections to Groups
	Example

	7.3.5 Section Attributes
	Example

	7.3.6 Changing Sections
	Syntax
	Example 1
	Example 2

	7.3.7 Section Functions
	SECT and OFFSET
	Example
	ALIGNMENT
	Example
	OBJBASE(SectionName)
	ORGBASE(SectionName)
	OBJLIMIT(SectionName)
	The OBJLIMIT function returns the last logical add...
	ORGLIMIT(SectionName)
	SIZE(SectionName)
	LINKEDSIZE(SectionName)
	The LINKEDSIZE function returns the final link tim...

	7.4 Groups
	7.4.1 GROUP
	Syntax

	7.4.2 Group Starting Address
	Example 1
	Example 2
	Example 3

	7.4.3 Setting Group Alignments
	Example

	7.4.4 Writing Groups to File
	Example

	7.4.5 Overlaying Groups
	Example

	7.4.6 Group Functions
	OBJBASE(GroupName)
	ORGBASE(GroupName)
	OBJLIMIT(GroupName)
	The OBJLIMIT function returns the last logical add...
	ORGLIMIT(GroupName)
	SIZE(GroupName
	LINKEDSIZE(GroupName)
	The LINKEDSIZE function returns the final link tim...
	About the Debugger
	Running the Debugger
	The Debugger Interface
	The Main Window
	Code Windows
	The Registers Window
	The Memory Window
	The Watch Window
	The Program Window
	The Breakpoints Window
	The Log Window
	The File Viewer Window
	The Local Vars Window
	Breakpoints
	Expressions
	Expression Formatting

	8 The Debugger
	8.1 About the Debugger
	8.2 Running the Debugger
	8.2.1 Command-line Syntax
	Files Used by the Debugger
	Table 8-1. Files used by the debugger.

	Command-line Switches
	Table 8-1. Debugger command-line switches.

	Example 1
	Example 2
	Example 3

	8.2.2 Session Files
	Project Infomation
	Default Settings
	Editing Session Files
	Memory Ranges
	The Memory Range Format
	Example
	Window Attributes
	Example

	8.3 The Debugger Interface
	8.3.1 Selecting Targets
	The Current Target
	Selecting a Target
	Discarding a Target

	8.3.2 Working with Windows
	Opening Windows
	Example
	Resizing Windows
	Using the Mouse
	Using the Keyboard
	Moving Windows
	Using the Mouse
	Using the Keyboard
	Selecting Windows

	8.4 The Main Window
	Figure 8�2. The Main debugger window.
	Main Window Menus
	8.4.1 File Menu
	Loading Debug Info
	Load COFF with Debug Info (Shift+Ctrl+C)
	Load Debug Info Only (Ctrl+C)
	Reloading COFFs
	Reload Procesor’s Last COFF
	Reload All COFFs in Use
	Binary Transfers
	Send Binary (Shift+S)
	Get Binary (Shift+G)
	Saving and Exiting
	Prompt and Exit (F3)
	Save and Exit (Ctrl+X)
	Quit (no Save) (Ctrl+Q)

	8.4.2 Session Menu
	Loading Session Files
	Load (F4)
	Reloading A Previous Session
	Reload Last (Ctrl+F4)
	Saving Session Files
	Save (Ctrl+F3)

	8.4.3 Target Menu
	Selecting Targets
	Select (Shift+0..7)
	Discarding Targets
	Setting Update Rates
	Update Rate (Shift+U)
	Monitoring (Selected Target) (Ctrl+M)
	Monitoring (All Targets) (Ctrl+U)

	8.4.4 Execution Menu
	Running Code
	Run from PC (F9)
	Run to Address (Shift+F9)
	Run All Targets (Ctrl+F9)
	Halt All Targets
	Stepping Code
	Single Step (F7)
	Step Into (Shift+F9)
	Step Over (F8)
	Unstep (Ctrl+F7)
	Halting Code
	Halt (Esc)
	Halt (DMA & Interrupts) (Shift+Esc)
	Reseting the Processor
	Reset Processor (Shift+Ctrl+R)
	Saving and Retrieving Registers
	Save Registers (Ctrl+S)
	Retrieve Registers (Ctrl+R)

	8.4.5 Breakpoint Menu
	8.4.6 Windows Menu

	8.5 Code Windows
	Types of Code Windows
	Running and Tracing Code
	8.5.1 Mixed Window
	The Mixed Window Regions
	Marked Instructions
	The PC Marker
	The Slot Instruction Marker
	Selecting Source Instructions
	Setting Breakpoints
	The Display Menu
	The Origin Menu
	The Format Menu
	The Execution Menu
	Run All Targets (Ctrl+F9)
	Stop All Targets
	The Breakpoints Menu
	The Utils Menu
	Example

	8.5.2 Disassembly Window
	8.5.3 Source Window

	8.6 The Registers Window
	Figure 8�1. The Registers window.
	The Status Bar
	Formating the Display
	Editing Register Values
	Saving and Retrieving Register Values.

	8.7 The Memory Window
	Figure 8�2. The Memory window.
	Formatting the Display
	Editing Memory Locations
	Copying and Filling Memory
	Memory Fill (Shift+F)
	Memory Copy (Shift+C)
	8.7.1 Finding Memory
	Find Memory (Ctrl+F)
	Finding a Pattern in Memory
	Table 8-1. Mode and Width combinations for memory ...

	Example
	The ? Wild Card
	Example
	Automatic Padding
	The Comma delimiter
	The Semi-colon Delimiter
	Examples

	8.8 The Watch Window
	Using Watch Expressions
	8.8.1 Structure Browsing
	Displaying Structre Browse Information

	8.9 The Program Window
	How the Program Window Works
	Creating and Editing Tcl Programs
	To Find Out More About Tcl
	8.9.1 SNASM2 Tcl Extensions
	put [Row Column] Text
	clear
	setrc Row Column
	where {Cursor|Mouse}
	readmem [{Byte|Word|Long}] Address Count
	sendmem [{Byte|Word|Long}] Address Values
	sym Name
	tosym Value [{Exact|Before|After}]
	firstsym Name Pattern
	nextsym Name
	getvalue Title
	bind [Event [Script]]
	readbin @[~]Filename Length Address [report]
	sendbin @[~]Filename Length Address [report]
	Examples

	8.10 The Breakpoints Window
	Using Breakpoints
	Breakpoints in Source Displays

	8.11 The Log Window
	8.12 The File Viewer Window
	8.13 The Local Vars Window
	8.14 Breakpoints
	8.14.1 Using Breakpoints
	Setting Breakpoints
	Configuring Breakpoints
	Clearing Breakpoints
	Viewing All Defined Breakpoints
	Breakpoints and Project Information

	8.14.2 Configuring Software Breakpoints
	Figure 8�2. The Breakpoint Configuration dialog bo...
	Setting Condition Flags
	Setting Action Flags
	Reset

	8.14.3 Configuring Hardware Breakpoints
	Channel Management
	The User Breakpoint Config Dialog Box
	Address
	Mask
	Break Cycle
	Break Access
	Access Cycle
	Operand Size
	Channel B Specifics

	8.14.4 Tracing
	Single Step F7
	Step Over F8
	Step Into Shift+F7
	Unstep Ctrl+F7

	8.15 Expressions
	Default Base
	8.15.1 GNU C++ Qualified Function Names
	Syntax
	Examples
	Valid Expression Qualifiers
	Invalid Symbols
	Considerations and Limitations

	8.15.2 Symbol Completion

	8.16 Expression Formatting
	8.16.1 The Format Specification
	8.16.2 The Format Specifier Character
	Table 8-4. Format specifier characters and their e...
	Examples

	8.16.3 The Pointer Modifier
	Syntax
	Examples

	8.16.4 The Width Modifier
	Syntax
	Examples

	8.16.5 The Repeat Modifier
	Syntax
	SNMAKE
	SNLIB
	SN2G

	9 SNMAKE
	9.1 Editor Macros for SNMAKE
	9.2 Project Files
	9.2.1 Creating Project Files
	Example

	9.2.2 Defining Targets
	9.2.3 Special Targets
	.RESOURCE;
	.INIT;
	.DONE;
	t?: ;
	.SNRES
	Example 1
	Example 3

	9.2.4 Defining Dependencies
	Example

	9.2.5 Defining Explicit Rules
	Example

	9.2.6 Defining Implicit Rules
	9.2.7 Defining Rules for Implicit Targets
	9.2.8 Line Continuation
	9.2.9 Comments
	9.2.10 Macros
	Table 9-1. SNMAKE macro functions.
	Example

	9.2.11 Special Macros
	9.2.12 Conditionals
	Example 1
	Example 2

	9.3 Command-line Syntax
	9.3.1 Switches
	Table 9-2. SNMAKE command-line switches.

	9.3.2 Example

	10 SNLIB
	10.1 Running SNLIB
	10.1.1 Command-line Syntax
	Table 10-1. SNLIB command-line switches.

	11 SN2G
	12.1 About SN2G
	12.2 Command-line Syntax
	Example

	12.3 Considerations and Limitations
	Complex Expressions
	Groups
	SNASM2 Specifics
	Hitachi Assembler Compatibility

	A Hitachi Assembler Compatibility
	A.1 Introduction
	A.1.1 Using Hitachi Syntax
	A.1.2 Porting Hitachi Code to SNASM2

	A.2 Overview of Syntax Differences
	A.2.1 Automatic literal pool generation
	A.2.2 The Line Continuation Character
	A.2.3 Conditional Assembly Functions

	A.3 Program Elements
	A.3.1 Continuation Lines
	A.3.2 Reserved Words
	A.3.3 Coding of Symbols
	A.3.4 Expressions
	Exclusive OR Operator
	STARTOF and SIZEOF

	A.3.5 Sections
	A.3.6 The .REG directive
	A.3.7 Data Definition and Reservation.
	DC.L
	Out of Range Parameters for DC, DCB, DB and DW
	Maximum Data Size for .DATB
	Appending Control Characters to Strings

	A.3.8 Object Module Assembler Directives
	.OUTPUT
	.DEBUG

	A.3.9 Assembly Listing Directives
	.PRINT, .LIST, .FORM, .HEADING, .PAGE, .SPACE

	A.3.10 Object Module Name Setting
	.PROGRAM

	A.3.11 File Inclusion Function
	A.3.12 Conditional Assembly Functions
	Prefixing Conditional Assembly Functions
	.ASSIGNA and .ASSIGNC

	A.3.13 Macro Function
	A.3.14 Character String Manipulation Functions
	.LEN, .INSTR, and .INSTR

	A.3.15 Automatic Literal Pool Generation Function
	Automatic Emission of the Literal Pool
	.POOL

	Index
	Symbols
	* 4-26, 4-27, 6-8
	@ 4-26, 4-27
	_ 6-10
	\# 4-31
	\$ 4-31
	* 6-8
	\@ 6-10
	\0 6-10
	A
	Addressing modes 4-36
	ADDRMODE function 4-36
	addressing modes 4-36
	ALIAS directive 5-3
	.ALIGN directive 5-27
	ALIGNMENT function 4-37, 7-13
	Assembler
	command file 3-13
	command-line syntax 3-3
	filenames 3-6 to 3-7
	default extensions 3-6, 3-7
	ignoring specified files 3-8
	quirks 3-12
	running 3-3
	Running from within an editor 2-2
	switches 3-8 to 3-11
	.ASSIGN directive
	See SET directive
	B
	Breakpoints 8-57 to 8-66
	clearing 8-57
	conditional 8-60
	configuring 8-57
	as counters 8-60
	halting 8-61
	logging 8-61
	setting 8-57
	single step 8-65
	step into 8-66
	step over 8-65
	suspending 8-60
	tracing 8-65
	unconditional 8-60
	unstep 8-66
	Breakpoints window 8-53
	C
	CASE and ENDCASE directives 5-46
	CNOP directive 5-28
	Code windows 8-30 to 8-37
	Command file
	linking 5-76, 5-86
	Conditional assembly 5-41 to 5-54
	CASE and ENDCASE directives 5-46
	DO and UNTIL directives 5-53
	.END directive
	See END directive
	END directive 5-42
	IF...ELSE...ELSEIF and ENDIF directives 5-43
	IFxx macros 6-16
	REPT and ENDR directives 5-48
	WHILE and ENDW directives 5-51
	Constants 4-21 to 4-29
	assembly location counter. See current location co...
	assembly time 4-25
	character 4-24
	current location counter 4-26
	integer 4-22
	pre-defined 4-27 to 4-29
	strings 4-30
	turning numbers into strings 4-31
	_CURRENT_FILE 4-28
	_CURRENT_LINE 4-28
	Current location counter 4-26
	D
	Data
	defining 5-16 to 5-24
	defining initialised 5-16 to 5-23
	DATA directive 5-22
	DATASIZE directive 5-21
	DCB directive 5-18
	DC directive 5-16
	HEX directive 5-20
	IEEE32 directive 5-23
	IEEE64 directive 5-23
	out of range parameters 5-19
	reserving space
	DS directive 5-24
	DATA directive 5-22
	DATASIZE directive 5-21
	_DAY 4-28
	DCB directive 5-18
	out of range parameters 5-19
	DC directive 5-16
	out of range parameters 5-19
	Debugger
	about 8-1
	Breakpoints window 8-53
	Code windows 8-30 to 8-37
	command-line syntax 8-2
	Disassembly window 8-36
	exiting 8-19
	File Viewer window 8-55
	interface 8-13 to 8-15
	Log window 8-54
	Main window 8-16 to 8-29
	Execution menu 8-25
	File menu 8-17
	Session menu 8-20
	Target menu 8-22
	Windows menu 8-29
	Memory window 8-40 to 8-41
	Mixed window 8-31
	Program window 8-48
	Registers window 8-38
	running 8-2 to 8-12
	session files 8-8
	memory ranges 8-9
	window attributes 8-11
	Source window 8-37
	target
	discarding 8-22
	monitoring 8-24
	resetting processor 8-27
	restoring registers 8-27
	saving registers 8-27
	selecting 8-13
	stopping 8-27
	updating 8-23
	Watch window 8-46
	structure browsing 8-47
	windows
	working with 8-14
	DEF function 4-37
	Directives
	changing names 5-3
	See also individual entries
	DISABLE directive 5-3
	Disassembly window 8-36
	DO and UNTIL directives 5-53
	DS directive 5-24
	E
	.END directive
	See END directive
	END directive 5-42
	ENDM directive 6-2
	Equates 5-5 to 5-15
	.ASSIGN directive
	See SET directive
	.EQU directive
	See EQU directive
	EQU directive 5-5
	EQUR directive 5-13
	EQUS directive 5-7
	permanent 5-5
	forward references 5-6, 5-21, 5-24, 5-28
	redefinable 5-6
	.REG directive
	See EQUR directive
	REG directive 5-15
	register 5-13 to 5-15
	RS 5-10 to 5-13
	SET directive 5-6
	string 5-7
	.EQU directive
	See EQU directive
	EQU directive 4-19, 4-25, 5-5
	EQUR directive 4-19, 5-13
	EQUS directive 4-19, 5-7
	Errors
	FAIL directive 5-71
	INFORM directive 5-70
	user generated 5-70 to 5-71
	EVEN directive 5-26
	.EXPORT directive
	See EXPORT directive
	EXPORT directive 5-73
	Expressions 4-33 to 4-43, 8-67 to 8-78
	C++ 8-67
	format specification 8-73
	format specifier character 8-74
	formatting 8-72
	functions 4-36 to 4-43
	operator precedence 4-34
	pointer modifier 8-75
	repeat modifier 8-78
	width modifier 8-76
	F
	FAIL directive 5-71
	_FILENAME 4-28
	Files
	including 5-34 to 5-38
	INCBIN 5-37
	INCLUDE directive 5-34
	FILESIZE function 4-37
	File Viewer window 8-55
	Forward references
	permanent equates 5-6, 5-21, 5-24, 5-28
	Functions 4-36 to 4-43
	ADDRMODE 4-36
	addressing modes 4-36
	ALIGNMENT 4-37
	DEF 4-37
	FILESIZE 4-37
	INSTR 4-40
	INSTRI 4-40
	LINKEDSIZE 4-40, 7-14, 7-20
	NARG 4-40
	OBJBASE 4-38, 7-13, 7-20
	OBJLIMIT 4-38, 7-14, 7-20
	OFFSET 4-40
	ORGBASE 4-38, 7-13, 7-20
	ORGLIMIT 4-38, 7-14, 7-20
	REF 4-41
	for sections and groups 7-4
	SIZE 4-39, 7-14, 7-20
	SQRT 4-41
	STRCMP 4-41
	STRICMP 4-41
	STRLEN 4-41
	TYPE 4-42
	G
	.GLOBAL directive
	See GLOBAL directive
	GLOBAL directive 5-76
	Groups 7-1
	alignment of 7-18
	associated directives
	summary 7-3
	associated functions
	summary 7-4
	attributes of 7-15
	current size
	See SIZE function
	defining 7-3
	functions 7-20
	initialised 7-2
	linked size
	See LINKEDSIZE function
	logical end address
	See OBJLIMIT function
	logical starting address
	See OBJBASE function
	overlaying 7-19
	physical end address
	See ORGLIMIT function
	physical starting address
	See ORGBASE function
	and sections 7-1 to 7-20
	starting address of 7-16
	uninitialised 7-2
	writing to file 7-18
	H
	HEX directive 5-20
	_HOURS 4-28
	I
	IEEE32 directive 5-23
	IEEE64 directive 5-23
	IF...ELSE..ELSEIF and ENDIF directives 5-43
	IFxx macros 6-16
	.IMPORT directive
	See IMPORT directive
	IMPORT directive 5-74
	INCBIN directive 5-37
	INCLUDE directive 5-34
	INFORM directive 5-70
	INSTR function 4-40, 5-56
	INSTRI function 4-40, 5-56
	L
	Labels 4-16 to 4-20
	and symbols 4-16 to 4-20
	local 4-16, 4-17
	in macros 6-21
	scope 4-17, 4-19
	LINKEDSIZE function 4-40, 7-14, 7-20
	Linking 5-72 to 5-86
	command file 5-86
	.EXPORT directive
	See EXPORT directive
	EXPORT directive 5-73
	.GLOBAL directive
	See GLOBAL directive
	GLOBAL directive 5-76
	guide to 5-76
	.IMPORT directive
	See IMPORT directive
	IMPORT directive 5-74
	PUBLIC directive 5-75
	LIST directive 5-32
	Listings 5-32 to 5-33
	LIST directive 5-32
	NOLIST directive 5-32
	Literal pools 4-6, A-9 to A-10
	LOCAL directive 6-21
	Local labels 4-16, 4-17
	in macros 6-21
	scope 4-17, 4-19
	scope in modules 5-58
	Log window 8-54
	M
	MACRO directive 6-2
	Macros 6-1 to 6-25
	advanced features 6-17 to 6-25
	extended parameters 6-17
	local lables 6-21
	PUSHP and POPP directives 6-23
	defining 6-2
	ENDM directive 6-2
	MACRO directive 6-2
	editor macros for SNMAKE 9-2
	ENDM directive 6-2
	expanding 6-3
	MEXIT diective 6-3
	IFxx macros 6-16
	importing labels 6-8
	introducing 6-2 to 6-4
	invoking 6-3
	local labels in 6-21
	LOCAL directive 6-21
	MACRO directive 6-2
	MACROS directive 6-14
	memory management 6-24
	MEXIT directive 6-3
	parameters 6-5 to 6-13
	extended 6-17
	labels as 6-8
	named 6-6
	numbered 6-5
	special 6-10
	variable numbers of 6-7
	PURGE directive 6-24
	short macros 6-14 to 6-16
	MACROS directive 6-14
	MACROS directive 6-14
	Make file. See Project file
	Memory ranges 8-9
	Memory window 8-40 to 8-41
	MEXIT directive 6-3
	_MINUTES 4-28
	Mixed window 8-31
	MODEND directive 5-58
	MODULE directive 5-58
	Modules 5-58 to 5-61
	MODEND directive 5-58
	MODULE directive 5-58
	scope of local labels in 5-58
	_MONTH 4-28
	N
	NARG function 4-40
	NARG symbol 4-28, 6-7, 6-17
	NOLIST directive 5-32
	Numbers
	turning into strings 4-31
	O
	OBJBASE function 4-38, 7-13, 7-20
	OBJ directive 5-29
	OBJEND directive 5-29
	OBJLIMIT function 4-38, 7-14, 7-20
	OBJLMIT function 7-20
	OFFSET function 4-40, 7-12
	Operator precedence 4-34
	OPT directive 5-68
	Optimisations 5-67
	changing in source code 5-69
	OPT directive 5-68
	PUSHO and POPO directives 5-69
	setting in source code 5-68
	Options 5-62 to 5-65
	changing in source code 5-69
	setting in source code 5-68
	ORGBASE function 4-38, 7-13, 7-20
	ORG directive 5-25
	ORGLIMIT function 4-38, 7-14, 7-20
	P
	POPO directive 5-69
	POPP directive 6-23
	POPS directive 7-10
	Program counter
	changing 5-25 to 5-29
	.ALIGN directive 5-27
	CNOP directive 5-28
	EVEN directive 5-26
	OBJ directive 5-29
	OBJEND directive 5-29
	ORG directive 5-25
	Program window 8-48
	Project files 2-1, 9-1, 9-3 to 9-11
	comments 9-8
	creating 9-3
	defining dependencies 9-6
	defining explicit rules 9-6
	defining implicit rules 9-7
	defining targets 9-4
	implicit targets
	defining rules for 9-8
	line continuation 9-8
	macros 9-9
	special targets 9-4
	PUBLIC directive 5-75
	PURGE directive 6-24
	PUSHO directive 5-69
	PUSHP directive 6-23
	PUSHS directive 7-10
	Q
	Quirks 3-12
	R
	_RADIX 4-27
	_RCOUNT 4-27
	REF function 4-41
	.REG directive
	See EQUR directive
	REG directive 5-15
	Registers window 8-38
	REGS directive 5-39
	REPT and ENDR directives 5-48
	REPT directive 5-48
	__RS variable 4-27, 5-10
	RS directive 5-10
	RSRESET directive 5-10
	RSSET directive 5-10
	S
	_SECONDS 4-28
	SECT function 7-12
	SECTION directive 7-5
	Sections 7-5 to 7-20
	ALIGNMENT function 7-13
	alignment of 7-7
	allocating to groups 7-8
	and groups
	introduction to 7-2 to 7-4
	associated directives
	summary 7-3
	associated functions 7-14 to 7-20
	summary 7-4
	attributes of 7-8
	base address of 7-12
	changing between 7-10
	current size
	See SIZE function
	Fragments 7-12
	and groups 7-1 to 7-20
	linked size
	See LINKEDSIZE function
	logical end address
	See OBJLIMIT function
	logical starting address
	See OBJBASE function
	name of 7-6
	OFFSET function 7-12
	offset of symbols in 7-12
	physical end address
	See ORGLIMIT function
	physical starting address
	See ORGBASE function
	SECT function 7-12
	symbol offset from alignment of 7-13
	Session files 8-8
	memory ranges 8-9
	window attributes 8-11
	SET directive 4-19, 5-6
	SHIFT directive 6-7, 6-17
	SIZE function 4-39, 7-14, 7-20
	SNASM2
	main menu 2-2
	SNLIB utility 10-1
	running 10-1
	command-line syntax 10-1
	SNMAKE utility 9-1
	command-line syntax 9-12 to 9-13
	switches 9-12
	editor macros for 9-2
	project files 9-3 to 9-11
	Source window 8-37
	SQRT function 4-41
	STRCMP function 4-41, 5-55
	STRICMP function 4-41, 5-55
	Strings 4-30
	comparing 5-55
	determining the length of 5-55
	equating substrings to a symbol 5-57
	INSTR function 5-56
	INTRI function 5-56
	manipulating 5-55 to 5-57
	STRCMP function 5-55
	STRICMP function 5-55
	STRLEN function 5-55
	SUBSTR function 5-57
	sub-strings 5-56
	STRLEN function 4-41, 5-55
	Structure browsing 8-47
	SUBSTR function 5-57
	Symbols
	and periods 4-20
	Syntax
	source code 4-1
	statement format 4-13
	T
	Target
	discarding 8-22
	monitoring 8-24
	registers
	restoring 8-27
	saving 8-27
	resetting processor 8-27
	selecting 8-13
	setting parameters for 5-39
	REGS directive 5-39
	stopping 8-27
	updating 8-23
	Tracing 8-65
	single step 8-65
	step into 8-66
	step over 8-65
	unstep 8-66
	TYPE function 4-42
	U
	Utilities
	SNLIB 10-1
	SNMAKE 9-1
	W
	Warnings
	FAIL directive 5-71
	INFORM directive 5-70
	user generated 5-70 to 5-71
	Watch window 8-46
	Structure browsing 8-47
	_WEEKDAY 4-28
	WHILE and ENDW directives 5-51
	Y
	_YEAR 4-27

