GENESIS SOFTWARE MANUAL # SEGA ENTERPRISES Copyright 1989 Sega of Japan This manual may not, in whole or part, be copied, photocopied, reproduced, or translated without prior written consent from Sega Enterprises. # Genesis Technical Overview February 28, 1990 #### **GENESIS:** #### 68000 @8mHz - Main CPU - 1 MByte (8 Mbit) ROM Area - 64 KByte RAM Area # VDP (Video Display Processor) - Dedicated video display processor - Controls playfield and sprites - Capable of DMA - Horizontal and vertical interrupts #### Z80 @4mHz - Controls PSG (Programmable Sound Generator) & FM Chips - 8 KBytes of dedicated Sound RAM #### VIDEO: - NOTE: Playfield and Sprites are character-based - Display Area (visual) - 40 Chars wide x 28 chars high - Each char is 8 x 8 pixels - Pixel resolution = 320 x 224 - 3 Planes - 2 Scrolling playfields - 1 Sprite plane - Definable priorities between planes - Playfields: - 6 Different sizes - 1 Playfield can have a "fixed" window - Playfield map - Each char position takes 2 bytes, that includes: - Char name (10 bits); points to char definition - Horizontal flip - Vertical flip - Priority - · Scrolling: - 1 Pixel scrolling resolution - Horizontal: - Whole playfield as unit - Each character line - Each scan line - Vertical - · Whole playfield as unit - 2 Char wide columns - Sprites: - 1 x 1 Char up to 4 x 4 chars - Up to 80 sprites can be defined - Up to 20 sprites displayed on a scan line - Sprite priorities - Character Definitions - 4 bits/pixel; points to color register - 4 bytes/scanline of char - 32 bytes for complete char definition - Playfield and sprite chars are the same #### **COLOR:** - Uses CRAM (part of the VDP) - 64 9-bit wide color registers - 64 colors out of 512 possible colors - 3 bits of Red - 3 bits of Green - 3 bits of Blue - 4 palettes of 16 colors - 0th color (of each palette) is always transparent #### OTHER: - DMA - Removes the 68000 from the BUS - Can move 205 bytes/scanline during VBLANK - There are 36 scanlines during VBLANK - MA can move 7380 bytes during VBLANK - Horizontal & Vertical Interrupts #### SOUND - Z80 Controls: - PSG (7) 76489 chip) - FM-chip (Yamaha YM 2612) - 6-Channel stereo - Z80 can access ROM data - 8 KBytes RAM # HARDWARE: - 2 Controllers - Joypad - 3 Buttons - Start button - 1 External port - 2 Video-outs (RF & RGB) - Audio jack (stereo)Volume control (for audio jack) S-WIGENESIS MANUAL Rev. 02/19/92 # **TABLE OF CONTENTS** | I. | MEMO | RY MAP 1 | |-----|-------|--| | | Α. | Mega Drive 16 Bit Mode 1 | | | | 1. 68K MEMORY MAP | | 11. | VDP 3 | 5 5 | | | A. | TERMINOLOGY | | | В. | DISPLAY SPECIFICATION | | | C. | VDP STRUCTURE 8 1. CTRL 8 2. VRAM 8 3. CRAM 8 4. VSRAM 8 5. DMA 8 | | | D. | INTERRUPT 9 1. VERTICAL INTERRUPT (V-INT) 9 2. HORIZONTAL INTERRUPT (H-INT) 9 3. EXTERNAL INTERRUPT (EX-INT) 10 | | | E. | VDP PORT 10 1. \$ C O O O O DATA PORT) 10 2. \$ C 0 0 0 0 4 (CONTROL PORT) 11 3. \$ C 0 0 0 0 8 (HV CONTER) 12 | | | F. | VDP REGISTER | | | | 5 PATTERN NAME TABLE BASE ADDRESS FOR SCROLL B 14 6 SPRITE ATTRIBUTE TABLE BASE ADDRESS 14 7. BACKGROUND COLOR 14 8. H INTERRUPT REGISTER 14 9 MODE SET REGISTER NO. 3 15 10. MODE SET REGISTER NO. 4 15 | | | | 11. H SCROLL DATA TABLE BASE ADDRESS 16 12. AUTO INCREMENT DATA 16 13. SCROLL SIZE 16 14. WINDOW H POSITION 16 15. WINDOW V POSITION 17 16. DMA LENGTH COUNTER LOW 17 17. DMA LENGTH COUNTER HIGH 17 | S-WAGENESIS MANUAL Rev. 02/21/92 | | | DMA SOURCE ADDRESS LOW | - | |------------|---------------|---|----------| | | 20. | DMA SOURCE ADDRESS HIGH | 7 | | G. | | S VDP RAM 1 | - | | | | RAM ADDRESS SETTING 1 | _ | | | | <u> </u> | 9 | | | 3. | CRAM ACCESS | | | | 4. | VSRAM ACCESS | 3 | | | | | | | | 6. | | | | H. | DMA TE | RANSFER | 6 | | | 1. | MEMORY TO VRAM | 6 | | | | VRAM FILL | 8: | | | | VRAM COPY | | | | 4. | DMA TRANSFER CAPACITY3 | 4 | | | CCDOL | LING CODEEN | 5 | | I. | | | 17
17 | | | 1. | | 39 | | | 2.
3. | | 1 | | | 3.
4. | SCROLL PATTERN NAME | 12 | | | 4.
5. | PATTERN GENERATOR | | | | J . | PATIENN GENERATOR | - | | J. | WINDO | ow 4 | 16 | | . | 1. | DISPLAY POSITION 4 | 16 | | | 2. | WINDOW PRIORITY | 50 | | | 3. | | 51 | | | _ | | | | K. | SPRITE | _ , , , , , , , , , , , , , , , , , , , | 52 | | | 1. | | 53 | | | 2. | | 55 | | | 3. | | 56 | | | 4. | | 57 | | | 5. | | 58 | | | 6. | SPRITE PATTERN GENERATOR | 60 | | L. | PRIOR | HTY | 31 | | L. | 1,11011 | | • | | М, | COLOF | R PAKETTE (| 67 | | | \$, X | | | | /N. / | INTER | LACE MODE | 69 | | | | | | | | | | -, . | | BACKI | WARD C | COMPATIBILITY MODE | 71 | | A. | MARK | III (MS-Japan) | 71 | | | | | _ | | B . | MAST | ER SYSTEM | 71 | | C. | RAM E | BOARD | 71 | | IV. | SYSTE | M I/O | |---------|----------------------------|---| | | Α. | VERSION NUMBER | | | В. | I/O PORT 72 | | | C. | MEMORY MODE | | | D. | Z80 CONTROL | | | E. | Z80 AREA | | ٧. | VRAM | MAPPING | | VI. | SOUNI | D SOFTWARE MANUAL | | | A.
B.
C.
D.
E. | 280 MAPPING 68K CONTROL OF Z80 FM SOUND CONTROL PSG CONTROL D/A CONTROL | | VII. | APPEN | NDIX | | | | | | | | | | | | | | | | | S-WIGENESIS MANUAL Rev. 02/24/92 #### I. MEMORY MAP A. Mega Drive 16 Bit Mode (as distinct from Master System Compatibility Mode) #### 1. 68K MEMORY MAP # 2. Z80 MEMORY MAP | 0000H | | | | |-------|------------------------|----------------------|---------| | | SOUND RAM | | 04000H | | 2000H | | YM2612 A0 | 04001H | | | SEGA | DO | 04002H | | | RESERVED | A1 | 04003H | | 4000H | | D1 | 04004H | | 6000H | SOUND CHIP
(YM2612) | ACCESS
PROHIBITED | 06000Н | | | MISCELLANEOUS | BANK
REGISTER | 06001H | | 8000H | | ACCESS
PROHIBITED | 0.7F11H | | | 68000 BANK | PSG 76489 | 07F12H | | | | ACCESS
PROHIBITED | | | FFFFH | | | | # 3. 68000 ACCESS TO Z80 MEMORY # 4. I/O AREA | \$A10000 | | |----------------|--| | \$A10002 | Version No. | | \$ A 1 0 0 0 8 | DATA (CTRL 1)
DATA (CTRL 2)
DATA (EXP) | | \$A1000E | CONTROL (1)
CONTROL (2)
CONTROL (E) | | \$ A 1 0 0 1 4 | T x DATA
R x DATA (1)
S - MODE | | \$ A 1 0 0 1 A | T x DATA
R x DATA (2)
S - MODE | | \$ A 1 0 0 2 0 | T x DATA
R x DATA (E)
S - MODE | | | CESS | # 5. CONTROL AREA **\$** A 1 F F F F \$A1FFFF | \$A11000 | | |------------------|-----------------------| | \$A11002 | MEMORY
MODE | | \$ A 1 1 1 0 0 | ACCESS
PROHIBITED | | * \$ A 1 1 1 0 2 | Z80 BUSREQ | | \$ A 1 12 0 0 | ACCESS
PROHIBITED | | \$ A 1 1 2 0 2 | Z80 RESET | | | ACCCESS
PROHIBITED | S-WAGENESIS MANUAL Rev. 02/19/92 S-WIGENESIS MANUAL #### II. VDP 315-5313 (Video Display Processor) The VDP controls screen display. VDP has graphic Modes IV and V, where Mode IV is for compatibility with the MASTER SYSTEM and V is for the new Mega drive functions. There are no advantages to using Mode IV, so it is assumed that all Mega drive development will use Mode V. In Mode V, the VDP display has 4 planes: SPRITE, SCROLLA/WINDOW, SCROLLB, and BACKGROUND. S-W\GENESIS MANUAL Rev. 02/20/92 #### A. TERMINOLOGY - 1. A unit of position on X. Y coordinates is called a DOT. - 2. A minimum unit of display is called a PIXEL. - 3. CELL means an 8 (pixel) x 8 (pixel) pattern. - 4. SCROLL indicates a repositionable screen-spanning play field. - 5. CPU usually indicates the 68000. - 6. VDP stands for Video Display Processor. - CTRL stands for Control. - 8. VRAM stands for VDP RAM, the 64K bytes area of RAM accessible only through the VDP. - 9. CRAM stands for Color RAM, 64 9 bit words inside the VDP chip. - 10. VSRAM stands for Vertical Scroll RAM, 40 10 bit words inside the VDP chips - 11. DMA stands for Direct Memory Access, the process by which the performs high speed fills or memory copies. - 12. PSG stands for Programmable Sound Generator, a class of low-capability sound chips. The Mega drive contains a Texas Instruments 76489 PSG chip. - 13. FM stands for Frequency Modulation, a class of high-capability sound chip. The Mega drive contains a Yamaha 2612 FM chip. #### **B. DISPLAY SPECIFICATION** #### DISPLAY SPECIFICATION OUTLINE | The second secon | |
--|--| | DISPLAY SIZE | THERE ARE TWO MODES:
32 * 28 CELL (256 * 224 PIXEL)
40 * 28 CELL (320 * 224 PIXEL) | | CHARACTER GENERATOR | 8 * 8 CELLS 1300 1800 depending on general system configuration. | | SCROLL PLAYFIELDS | Two scrolling play fields, whose size in cells is selectable from: 32° 32, 32° 64, 32° 128 64° 32° 64° 64 128° 32° | | SPRITE | Sprite size is programmable on a sprite by sprite basis, with the following choices: 8 * 8, 8 * 16, 8 * 24, 8 * 32 16 * 8, 16 * 16, 16 * 24, 16 * 32 24 * 8, 24 * 16, 24 * 24, 24 * 32 32 * 8, 32 * 16, 32 * 24, 32 * 32 There are 64 sprites available when the screen is in 32 cell wide mode, or 80 when the screen is in 40 cell wide mode. | | WINDOW | 1 window associated with the Scroll A play field. | | COLORS | 64 colors/512 possibilities. | For PAL (the European television 50 Hz standard), a vertical size of 30 cells (240 dots) is selectable. The VDP supports both NTCS and PAL television standards. In both cases, the screen is divided into active scan, where the picture is displayed, and vertical retrace (or vertical blanking) where the monitor prepares for the next display. Numbers of rasters in a screen are as follows: | LINES/SCREEN | VCELL NO. | LINE NO.
(DISPLAY) | LINE NO.
(RETRACE) | |--------------|-------------|-----------------------|-----------------------| | NTSC 262 | 28 . | 224 RASTER | 38 RASTER | | PAL 312 | 28 | 224 RASTER | 98 RASTER | | | 30 | 240 RASTER | 82 RASTER | # C. VDP STRUCTURE The CPU controls the VDP by special I/O memory locations. - CTRL (control) This controls REGISTER, VRAM, CRAM, VSRAM, DMA DISPLAY, etc. - VRAM (VDP RAM) General purpose storage area for display data. - CRAM (COLOR RAM) 64 colors divided into 4 palettes of 16 colors each. - VSRAM (Vertical Scroll RAM) Up to 20 different vertical scroll values each for scrolling play fields A and B. - DMA (Direct Memory Access) The VDP may move data at high speed from CPU memory to VRAM, CRAM and VSRAM instead of the CPU, by taking the 68000 off the bus and doing DMA itself. The VDP can also fill the VRAM with a constant, or copy from VRAM to VRAM without disturbing the 68000. #### D. INTERRUPT There are three interrupts, Vertical, Horizontal, and External. You can control each interrupt by the IEO, IE1, and IE2 bits in the VDP registers. The interrupts use the AUTO-VECTOR mode of the 68000 and are at levels 6, 4, and 2 respectively; the level 6 vertical interrupt having the highest priority. IEO V Interrupt (LEVEL 6) IE1 H Interrupt (LEVEL 4) IE2 External Interrupt (LEVEL 2) - 1: Enable - 0: Disable **DISPLAY PERIOD** #### VERTICAL INTERRUPT (V-INT) The vertical interrupt occurs just after V retrace. **V RETRACE** The VDP loads the required display information, including all required register values, for the line in about 36 clocks, thus the CPU can control the display of the next line but not the line on which the interrupt occurs. The horizontal interrupt is controlled by a line counter in register #10. If this line counter is changed at each interrupt, the desired spacing of interrupts may be achieved. hus: If register #10 equals 00h, then the interrupt occurs every line. If register #10 equals 01h, then the interrupt occurs every other line. If register #10 equals 02h, then the interrupt occurs every third line. # 3. EXTERNAL INTERRUPT (EX-INT) The external interrupt is generated by a peripheral device (gun, modem) and stops the H, V counter for later examination by the CPU. # INTERRUPT HAPPEN (COUNTER RATCHED) Please see other sections of this manual for information about the H, V counter and the initialization of the external interrupt. #### E. VDP PORT The VDP ports are at location 68000 in the 68000 memory space. | UPPER BYTE LOWER BYTE | |-----------------------| | DATA PORT | | " | | CONTROL PORT | | ** | | HV COUNTER | | PROHIBITED | | PROHIBITED | | PROHIBITED | | PROHIBITED PSG | | | # 1. \$ C O O O O (DATA PORT) READ/WRITE: VAAM, VSRAM, CRAM | W | | | | | | | | | | | | | | | | | | |-----------------|---------|--------|-------|-------|--------|-------|-------|-------|-------|----|----|----------------|----|----|----|----|----------| | \$ C0000 | DT15 | D | T14 | | 13 | TD | 12 | DT | 11 | DT | 10 | D ⁻ | Г9 | D. | T8 | | (D15~D8) | | | | DT7 | D | T6 | D | T5 | D. | Г4 | D | гз | D. | Γ2 | D. | Γ1 | D. | TO | (D7~D0) | | | \$C0000 | 00 and | \$C00 | 002 2 | are fi | nctio | nally | equiv | alent | | | | | | | | | # 2. \$ C 0 0 0 0 4 (CONTROL PORT) #### **READ: STATUS REGISTER** | \$C00004 | | | | | | | | | • | EMPT | | | ULL | | (D15~D8) | | | |----------|--|---|---|------|--|---|----|----|---|------|---|---|-----|----|----------|----|---------| | | | F | : | SOVR | | С | OI | DD | ٧ | 'B | Н | В | DI | MA | P | AL | (D7~D0) | #### * NO USE EMPT.... 1: WRITE FIFO EMPTY 0: FULL.... 1: WRITE FIFO FULL 0: F.... 1: V interrupt happened SOVR.... 1: Sprites overflow occurred, too many in one line. Over 17 in 32 cell mode. Over 21 in 40 cell mode. C..... 1: Collision happened between non-zero pixels in two sprites. 0: ODD 1: Odd frame in interlace mode. 0: Even frame in interlace mode. VB 1: During V blanking 0: HB 1: During H blanking 0: DMA 1: DMA BUSY 0: PAL 1: PAL MODE 0: NTSC MODE # WRITE1: REGISTER SET | \$C00004 | 1 | | 0 0 | FIS4 | R | S3 R | S2 R | S1 | RS0 | (D15~D8) | |----------|-----------|-----|-----|---------------|----|------|------|----|-----|----------| | | | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | (D7~D0) | | • | A A A A A | 0.4 | | · concretions | | | | | | _ | * \$C00004 and \$C00006 are functionally equivalent. RS4 ~ RS0: Register No. D7 ~ D0: Data * You must use word or long word access to the VDP ports when setting the registers. Long word access is equivalent to two word accesses, with D31 - D16 written first. # WRITE2: ADDRESS SET CD5 ~ CD0: ID CODE A15 ~ A0: **DESTINATION RAM ADDRESS** | ACCESS MODE | CD5 | CD4 | CD3 | CD2 | CD1 | ÇD0 | |-------------|-----|-----|-----|-----|--------------|---------------| | VRAM WRITE | 0 | 0 | 0 | 0 | 0 | 1 | | CRAM WRITE | 0 | 0- | 0 | | ≪ 1 \ | 1 | | VSRAM WRITE | 0 | 0 | 9 | 1 | O | \mathcal{A} | | VRAM READ | 0 | 0 | 0 | 0 | 0 | 0 | | CRAM READ | 0 | 0 | 1 | 0 | 0 | 0 | | VSRAM READ | 0 | 0 | 0 | | 0 | 0 | ^{*} You must use word or long word when performing these operations. # 3. \$ C 0 0 0 0 8 (HV COUNTER) # NON INTERLACE MODE | | | 198.400 | | | | | | | | |----------|--|---------|-----|------|------|------|-------|-----|----------| | \$C00008 | VC7 | VC6 VC5 | vo | 54 V | C3 V | C2 V | 'C1 V | co | (D15~D8) | | | ////////////////////////////////////// | | HC6 | HC5 | HC4 | нсз | HC2 | HC1 | (D7~D0) | # INTERLACE MODE | \$ C 0 0 0
0 B | VC7 | VC | 6 V | C5 | VC | 4 | VC | 23 | VC | C2 | VC | 1 | VC | 8 | | (D15~D8
) | |-------------------|-----|----|-----|----|----|---|----|----|----|----|----|---|----|---|----|--------------| | | H | C8 | HC7 | НС | 26 | Н | C5 | Н | C4 | Н | СЗ | Н | C2 | Н | C1 | (D7~D0) | HC8 ~ HC1: **H COUNTER** VC8 ~ VC0 **V COUNTER** #### F. VDP REGISTER VDP has write only register No. 0~No. 23 and read only status register totalling 25 register. There are two modes for register setting; one is mode 4, the other mode 5. We tell you about mode 5 in this section and about mode 4 in MARK III section. If you change mode in one frame you can get various effects. #### 1. MODE SET REGISTER NO.1 | | MSB | | | | | | | LSB | |---------|-----|-----|---|-----|---|---|----|-----| | REG. #0 | 0 | 0 , | 0 | IE1 | 0 | 1 | М3 | 0 | IE1.. ..
.. 1: Enable H interrupt (68000 LEVEL 4) 0: Disable H interrupt (REG #10) МЗ 1: H, V counter stop 0: Enable read, H. V counter #### 2. MODE SET REGISTER NO.2 DISP 1: Enable Display 0: Disable Display IE0.. 1: Enable V interrupt (68000 LEVEL 6) 0: Disable V interrupt M1 1: DMA Enable 0: DMA Disable M2 1: V 30 cell mode (PAL mode) 0: V 28 cell mode (PAL mode; always 0 in NTSC mode) #### 3. PATTERN NAME TABLE BASE ADDRESS FOR SCROLL A | | MSB | | <u> </u> | | | | | LSB | | |---------|-----|---|----------|------|------|---|---|-----|--| | REG. #2 | 0 | 0 | \$A15 | SA14 | SA13 | 0 | 0 | 0 | | VRAM ADDR %XXX0_0000_0000_0000 # 4. PATTERN NAME TABLE BASE ADDRESS FOR WINDOW | | MSB | | | | | - | | LSB | |---------|-----|---|------|------|------|------|------|-----| | REG. #3 | 0 | 0 | WD15 | WD14 | WD13 | WD12 | WD11 | 0 | WDII should be 0 in H40 cell mode VRAM ADDR %XXXX_X000_0000_0000 (H32 cell mode) VRAM ADDR %XXXX_0000_0000_0000 (H40 cell mode) S-WIGENESIS MANUAL Rev. 02/19/92 # 5. PATTERN NAME TABLE BASE ADDRESS FOR SCROLL B | | MSB | | | | | | | LSB | |---------|-----|---|---|---|---|------|------|------| | REG. #4 | 0 | 0 | 0 | 0 | 0 | SB15 | SB14 | SB13 | VRAM ADDR %XXX0_0000_0000_0000 #### 6. SPRITE ATTRIBUTE TABLE BASE ADDRESS AT9 should be 0 in H40 cell mode VRAM ADDR %XXXX_XXX0_0000_0000 (32 cell) VRAM ADDR %XXXX_XX00_0000_0000 (40 cell) | | MSB | | | | | | LSB | |---------|-----|---|---|---|---|---|-----| | REG. #6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | #### 7. BACKGROUND COLOR | | MSB | | | | | | | LSB | |---------|-----|---|------|------|------|------|------|------| | REG. #7 | 0 | 0 | CPT1 | CPT0 | COL3 | COLS | COL1 | COL0 | CPT 1,0: COLOR PALLET COL 3~0: COLOR CODE | | MSB | | | > | | | | LSB | |---------|-----|---|---|-------------|---|---|---|-----| | REG. #8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | | | | • | | | | MSB | | | | | | | LSB | | DEC #0 | | | | | | | | | # 8. HINTERBUPT REGISTER | | MSB | | | | | | . == | LSB | |----------|------|------|------|------|------|------|------|------| | REG. #10 | HIT7 | НІТ6 | HIT5 | HIT4 | нітз | HIT2 | HIT1 | ніто | This register makes H interrupt timing by number of laster. H interrupt is enabled by IE = 1. #### 9. MODE SET REGISTER NO. 3 **MSB LSB** REG. #11 IE2 **VSCR HSCR LSCR** - 1: Enable external interrupt (68000 LEVEL 2) - 2: Disable external interrupt #### * See INTERRUPT and SYSTEM I/O VSCR: V scroll mode | VSCR | FUNCTION | |------|-------------------| | 0 | FULL SCROLL | | 1 | EACH 2CELL SCROLL | HSCR, LSCR: H scroll mode | HSCR | LSCR | FUNCTION | |------|------|-------------------| | 0 | 0 | FULL SCROLL | | 0 | 1 | PROHIBITED | | 1 | 0 | EACH 1CELL SCHOLL | | 1 | 1 | EACH TLINE SCHOLL | * BOTH SCROLL A and B #### 10. MODE SET REGISTER NO. 4 | | MSB | | | | | | LSB | |----------|-----|---|---|---|----------|--------|-----| | REG. #12 | RS0 | 0 | 0 | O | S/TE LSM | 1 LSM0 | RS1 | RSO..... 0: HORIZONTAL 32 CELL MODE 1: HORIZONTAL 40 CELL MODE 0: HORIZONTAL 32 CELL MODE 1: HOPIZONTAL 40 CELL MODE 32 cell 0000 XXX0 40 cell 1000_XXX1 1: Enable SHADOW and HILIGHT 0: Disable SHADOW and HILIGHT LSM1, LSM0: Interlace mode setting | LSM | LSMO | FUNCTION | |-----|------|-------------------------------| | 0 | 0 | NO INTERLACE | | o) | 1 | INTERLACE | | 1 | 0 | PROHIBITED | | 1 | 1 | INTERLACE (DOUBLE RESOLUTION) | S-W/GENESIS MANUAL Rev. 02/19/92 ^{*} You should set same No. in RSO, RS1. #### 11. H SCROLL DATA TABLE BASE ADDRESS **MSB LSB** REG. #13 0 **HS10** 0 **HS15 HS14 HS13 HS12 HS11** VRAM ADDR %XXXX_XX00_0000_0000 **MSB** LS REG. #14 0 0 0 0 0 #### 12. **AUTO INCREMENT DATA** This register controls bias number of increment data. **MSB** LSB REG. #15 INC7 INC6 INC5 INC4 NC2 **INC**0 INC3 > INC7~0: Bias number (0~\$FF) This number is added automatically after RAM access. #### 13. **SCROLL SIZE** **MSB LSB REG. #16** VSZ1 HSZ₀ 0 VSZ2 HSZ₁ 0 VSZ1, 0: VSIZE | | · · · · · · · · · · · · · · · · · · · | | |------|---------------------------------------|------------| | VSZ1 | VSZ0 | FUNCTION | | 0 | 0 | V 32 cell | | 0 | 1 | V 64 cell | | 1 | 0// | PROHIBITED | | 1 | 1 | V 128 cell | | | WA. | 2007 VIII | HSZ1, 0: HSIZ | HSZ1 | HSZ0 | FUNCTION | |------|------|------------| | 0 | 0 | H 32 cell | | 0 | 1 | H 64 cell | | 1 | 0 | PROHIBITED | | 1 | 1 | H 128 cell | Both of scroll A and B # WINDOW H POSITION MSB **LSB** REG. #17 **RIGT** WHP5 WHP3 WHP2 WHP1 0 0 WHP4 > RIGT.... 0: Window is in left side from base point. > > 1: Window is in right side from base point. WHP5~1 Base pointer 0 = Left side 1 = 1 cell right 2 ... #### 15. WINDOW V POSITION MSB LSB REG. #18 DOWN 0 0 WVP4 WVP3 WVP2 WVP1 WVP0 DOWN 0: Window is in upper side from base point. 1: Window is in lower side from base point. WPV4~0 Base pointer 0 = Upper side 1 = 1 cell down 2 ... #### 16. DMA LENGTH COUNTER LOW REG. #19 LG7 LG6 LG5 LG4 LG3 LG2 LG1 LG0 # 17. DMA LENGTH COUNTER HIGH MSB REG. #20 LG15 LG14 LG13 LG12 LG11 LG10 LG9 LG8 LG15~0: DMA LENGTH COUNTER 18. DMA SOURCE ADDRESS LOW MSB LSB REG. #21 SA8 SA7 SA6 SA5 SA4 SA3 SA2 SA1 19. DMA SOURCE ADDRESS MID. REG. #22 SA16 SA15 SA14 SA13 SA12 SA11 SA10 SA9 20. DMA SOURCE ADDRESS HIGH REG. #23 DMD1 DMD0 SA22 SA21 SA20 SA19 SA18 SA17 SA22 : DMA SOURCE ADDRESS #### DMD1, 0: DMA MODE | DMD1 | DMD0 | FUNCTION | |------|------|----------------| | 0 | SA23 | MEMORY TO VRAM | | 1 | 0 | VRAM FILL | | 1 | 1 | VRAM COPY | S-WIGENESIS MANUAL Rev. 02/19/92 # G. ACCESS VDP RAM # 1. RAM ADDRESS SETTING You can access VRAM, CRAM and VSRAM after writing 32 bits of control data to \$C00004 or \$C00006. You have to use word or long word when addressing. If you use long word D31~D16 is 1st, D15~D0 2nd. CD5~CD0: ID CODE A15~A0: DESTINATION RAM ADDRESS | | CD5 | CD4 | CD3 | CD | //CD1 | CD0 | |-------------|-----|-----|-----|----|-------|-----| | VRAM WRITE | 0 | 0 | 0 | 0 | 0 | 1 | | CRAM WRITE | 0 | 0 | 0 | 0 | 1 | 1 | | VSRAM WRITE | 0 | 0 | 0 | 1 | 0 | 1 | | VRAM READ | 0 | 0 | 0 | 0 | 0 | 0 | | CRAM READ | 0 | 0 | 1 | 0 | 0 | 0 | | VSRAM READ | 0/ | ~ • | 0 | 1 | 0 | 0 | #### 2. VRAM ACCESS VRAM address range from 0 to 0FFFFH, 64K bytes total. VRAM access addressing is as follows when writing: D15~D0: VRAM data When you use long word D31~D16 is 1st, D15~D0 is 2nd. When you do byte writing, data is D7~D0, and may be written to \$C00000 or \$C00001. VRAM address is increased by the value of REGISTER #15, independent data size. VRAM address A0 is used in the calculation of the address increment, but is ignored during address decoding. VRAM addressing and decoding are as follows: the VRAM address decode uses A15~A1, and A0 specifies the data write format. Write data cannot cross a word boundary, high and low bytes are exchanged if A0=1. S-W/GENESIS MANUAL Rev. 02/20/92 | ļ | _ [| BYTE | | | WORD | LONG V | VORD | 1 | |------------|-------------|----------------|------|------|-----------------|--------|--------------------|---| | ADDRESS: 0 | 1st | D7~D0 | | 1st | D15~D8
D7~D0 | 1st | D31~D24
D23~D16 | | | 2
3 | 2nd | D7~D0 | | 2nd | D15~D8
D7~D0 | 1st | D15~D8
D7~D0 | | | 4
5 | 3rd | D7~D0 | | 3rd | D15~D8
D7~D0 | 2nd | D31~D24
D23~D16 | | | 6
7 | 4th | D7~D0 | | 4th | D15~D8
D7~D0 | 2nd | D15~D8
D7~D0 | | | 8
9 | 5th | D7~D0 | | 5th | D15~D8
D7~D0 | 3rd | D31~D24
D23~D16 | | | | | | | | | | | 1 | | START ADI | יים ביים | 0 REG.# | 15 1 | | | | | | | SIARI ADI | | BYTE | 15=1 | wand | | LONG V | VORD | 1 | | ADDRESS: 0 | 2nd
1st | D7~D0
D7~D0 | | 2nd | D7~D0
D15~D8 | 1st | D7~D0
D15~D8 | | | 2
3 | 4th
3rd | D7~D0
D7~D0 | | 4th | D7~D0
D15~D8 | 2nd | D7~D0
D15~D8 | | | 4
5 | 6th
5th | D7~00
D7~00 | | 6th | D7~D0
D15~D8 | 3rd | D7~D0
D15~D8 | | | 6
7 | 8th
7th | D7-D0
D7-D0 | | 8th | D7~D0
D15~D8 | '4th | D7~D0
D15~D8 | | | 8 9 | 10th
9th | 07~D0
D7~D0 | | 10th | D7~D0
D15~D8 | 5th | D7~D0
D15~D8 | | | | | 4) | • | | | | | START ADDRESS: 1 REG. #15=2 | 1 | BYTE | | 1 | WORD | 1 | 1 | LONG | WORD
I | |------------|------|-------|---|------|-----------------|---|------|----------------------| | ADDRESS: 0 | 1st | D7~D0 | | 1st | D7~D0
D15~D8 | | 1st | D23~D16
D31~D24 | | 2
3 | 2nd | D7~D0 | | 2nd | D7~D0
D15~D8 | | 1st | D23~D16
D31~D24 | | 4
5 | 3rd | D7~D0 | | 3rd | D7~D0
D15~D8 | | 2nd | D23~D16
D31~D24 | | 6
7 | 4th | D7~D0 | | 4th | D7~D0
D15~D8 | | 2nd | D23~D16
, D31~D24 | | 8
9 | 5th | D7~D0 | | 5th | D7~D0
D15~D8 | | 3rd | D23~D16
D31~D24 | | | | |] | | | | | | START ADDRESS: 1 REG. #15=1 | | BYTE | | | WORD | | 7 | LONG WORD | | |------------|------------
--|---|----------|-----------------|---|-----------|--------------------| | | | | | | | | | , | | ADDRESS: 0 | 1st | D7~D7 | | 1st | D7~D0
D15~D8 | | ist | D23~D16
D31~D24 | | 2
3 | 3rd
2nd | D7~D7
D7~D7 | | 3rd | D7~D0
D15~D8 | | 2nd | D23~D16
D31~D24 | | 4
5 | 5th
4th | D7~D7
D7~D7 | | 5th | D7~D0
D15~D8 | | 3rd | D23~D16
D31~D24 | | 6
7 | 7th
6th | D7~D7
D7~D7 | | 7th | D7~D0
D15~D8 | | 4th | D23~D16
D31~D24 | | 8
9 | 9th
8th | D7~D7
D7~D7 | | 9th | D7~D0
D15~D8 | | 5th | D23~D16
D31~D24 | | | | Married Annual Control of the Contro | 1 | * | | 1 | ĺ | | A15~A0: VRAM ADDRESS D15~D0: VRAM DATA The data is always read in word units. A0 is ignored during the reading; no swap of bytes occurs if A0=1. Subsequent reads are from address incremented by REGISTER #15. A0 is used in calculation of the next address. #### 3. CRAM ACCESS The CRAM contains 128 bytes, addresses 0 to 7FH. For word wide writes to the CRAM, use: D15~D0 are valid when we use word for data set. If the writes are byte wide, write the high byte to \$C00000 and the low byte to \$C00001. A long word wide access is equivalent to two sequential word wide accesses. Place the first data in D31 - D16, and the second data in D15 - D0. The data may be written sequentially; the address is incremented by the value of REGISTER #15 after every write, independent of whether the width is byte or word. Note that A0 is used in the increment, but not in address decoding, resulting in some interesting side effects if writes are attempted at odd addresses. For word wide reads from the CRAM, use: #### 4. VSRAM ACCESS The VSRAM contains 80 bytes, addresses 0 to 4FH. For word wide writes to the VSRAM, use: VS10~VS0: V quantity of scroll #### 5. ACCESS TIMING The CPU and VDP access VRAM, CRAM and VSRAM using timesharing. Because the VDP is very busy during the active scan, the CPU accesses are limited. However, during vertical blanking, the CPU may access the VDP continuously. The number of permitted accesses by the CPU additionally depends on whether the screen is in 32 cell mode or 40 cell mode. Additionally, the access size depends on the RAM type; a VRAM access is byte wide, but CRAM and VSRAM are word wide. For example, in 32 Cell mode, the CPU may access the VRAM 16 times during horizontal scan in a single line. Each acceess is a byte write, so this amounts to 8 words. However, CRAM and VSRAM, though sharing the 16 time limit, are word accesses so that 16 words may be written in a single line. Although there is a four-word FIFO, if writes are done in a tight loop during active scan, the FIFO will fill up and the CPU will eventually end up waiting to write. The maximum wait times are: | Display Mode Maximum Waiting Time | | |-----------------------------------|--| | H32 cell Approximately 5.96 µ sec | | | H40 cell Approximately 4.77 μ sec | | As the CPU has unlimited access to the RAMs during vertical blanking, the wait case never arises. #### 6. HV COUNTER The HV Counter's function is to give the horizontal and vertical location of the television beam. If the "M3" Bit of Register #0 is set, the HV Counter will then freeze when trigger signal HL goes high, as well as triggering a level 2 interrupt. | МЗ | Counter Latch Mode | |----|--| | 0 | Counter is not latched by trigger signal | | 1 | Counter is latched by trigger signal | M3: Register #0 #### Non-Interlace Mode \$C00008 | V | C7 | V | 26 | V | 25 | V | 24 | V | СЗ | V | C2 | V | C1 | VC0 | | (D15 | 5 ~ D |)8)
7 ~ (200 | |---|----|----|----|-----------|----|----|----|----|----|----|----|---|----|-----|----|------|-------|-------------------------| | | Н | C8 | HO | 07 | Н | C6 | Н | C5 | Н | C4 | Н | | Н | | HC | | (D7 | 7 - 100 | #### Interlace Mode \$C00008 | VC7 | | VC6 VC | | 5 | 1 1 | | | 23 | | | VC1 | | yeo | | (D15 ~ D8) | | | | |-----|---|--------|----|---|-----|---|---|------------|---|---|-----|---|-----|----|------------|--|-----------|--| | | Н | 28 | НС | 7 | НС | 6 | Á |) 5 | H | 4 | НС | 3 | 14 | 32 | Н | | (D7 ~ D0) | | V-Counter: VC7 ~ VC0 Display Mode Counter Data V 28 Cell 0 ~ DFH V 30 Cell 0 ~ EFH H-Counter: HC8 ~ HC1 | Display Mode | Counter Data | | | | | |--------------|--------------|--|--|--|--| | H 32 Cell | 0 ~ 7FH | | | | | | H 40 Cell | 0 ~ 9FH | | | | | The counter only has eight bits each for H and V, so Interlace Mode and 40 Cell (320 dot) modes present some problems. During Interlace Mode, the LSB of the vertical position is replaced by the new MSB. The horizontal resolution problem is solved by always dropping the LSB. # Caution: As the HV Counter's value is not valid during vertical blanking, check to be sure that it is active scan before using the value. #### H. DMA TRANSFER DMA (Direct Memory Access) is a high-speed technique for memory access to the VRAM, CRAM, and VSRAM. During DMA, VRAM, CRAM and VSRAM occur at the fastest possible rate (refer to the section on Access Timing). There are three modes of DMA access, as can be seen below, all of which may be done to VRAM or CRAM or VSRAM. The 68K is stopped during memory to VRAM/CRAM/VSRAM DMA, but the Z80 continues to run as long as it does not attempt access to the 68K memory space. The DMA is quite fast during VBLANK (about double the tightest possible 68K loop's speed), but during active scan the speed is the same as a 68K loop. Please note that after this point, VRAM is used as a generic term for VRAM/CRAM/VSRAM. | DMD1 | DMDo | DMA Mode | Size | |------|------|--------------------|--------------------| | 0 | SA23 | A. Memory to V-RAM | Word to Byte (H) & | | 1 | 0 | B. VRAM FIII | Byte to Byte | | 1 | 1 | C. VRAM Copy | Byte to Byte | DMD1, DMD0: Reg. #23 * DMD0 = SA23 Source address are \$000000~\$3FFFFF (ROM) and \$FF0000~\$FFFFFF (RAM) for memory to VRAM transfers. In the case of ROM to VRAM transfers, a hardware feature causes occasional failure of DMA unless the following two conditions are observed: - The destination address write (to address \$C00004) must be a word write. - The final write must use the work RAM. There are two ways to accomplish this: (1) by copying the DMA program into RAM, or (2) by doing a final "move W RAM address, \$C00004" #### 1. MEMORY TO VRAM This function transfers data from 68K memory to VRAM, CRAM or VSRAM. During this DMA all 68K processing stops. The source address is \$000000~\$3FFFFF for ROM or \$FF0000 \$FFFFFF for RAM. The DMA reads are word-wide, writes are byte-wide for VRAM and word-wide for CRAM and VSRAM. The destination is specified by: | CD2 | CD1 | CD0 | Memory Type | |-----|-----|-----|-------------| | 0 | 0 | 1 | VRAM | | 0 | 1 | 1 | CRAM | | 1 | 0 | 1 | VSRAM | ## Setting of DMA - A. M1 (Register #1) = 1 : DMA ENABLE. - B. Increment number set to Register #15 (normally #2). - C. Transfer word number set to Registers #19, #20. - D. Source address and DMA mode set into Registers #21, #22 and #23. - E. Set the destination address. - F. *VDP gets the CPU bus. - G. *DMA start. - H. *VDP releases the CPU bus. - I. M1 has to be 0 after confirmation of DMA finish: DMA DISENABLE. DMA starts after Step E. You must set M1=1 only during DMA; otherwise, we cannot guarantee the operation. Source addresses were increased with +2 and destination address increased with content of Register #15. ## Content of Register. Register #1 has another bit. | | | | | 2000 | | | | | |--------------|-----------|------|----------|--------|-------|-----------|---|------| | Register #15 | INC7 | INC6 | INC5 | INČ4 | INC3 | INC2 | INC1 | INC0 | | | | | IMIR7 - | INICO | Numbo | r of incr | omost | | | | | | 11460 | INCU . | Numbe | i Oi INGI | ement | | | Register #1 | 0 | DISP | IEO | M1 | M2 | -1 | 0 | 0 | | • | | | | | | | | | | Register #19 | LG7 | LG6 | LG5 | LG4 | LG3 | LG2 | LG1 | LG0 | | , | a promise |
 | | | | • | | | Register #20 | LG15 | LG14 | LG13 | LG12 | LG11 | LG10 | LG9 | LG8 | | | | | \ | | | | | | | Register #21 | SA8 | SA7 | SA6 | SA5 | SA4 | SA3 | SA2 | SA1 | | | a | | | | | | | | | Register #22 | SA16 | SA15 | SA14 | SA13 | SA12 | SA11 | SA10 | SA9 | | | | | | | | | | | | Register #23 | 0 | SA23 | SA22 | SA21 | SA20 | SA19 | SA18 | SA17 | 1st \$C00004 | CI | D1 | CI | 00 | DA | 13 | DA | 12 | DA | 11 | DA | 10 | D/ | 1 9 | D/ | 18 | (D1 | 15 ~ D8) | |----|----|----|----------|----|----|------------|-----|----|----|-----------|----|------------|------------|------------|-----------|-----|-----------| | | D, | A7 | D | A6 | D | A 5 | D. | A4 | D/ | 43 | D | A 2 | D | A 1 | D | 40 | (D7 ~ D0) | | (|) | (| <u> </u> | (|) | (|) ; | (|) | (|) | (|) | (|) | (D1 | 15 ~ D8) | | | | 1 | | 0 | (|) | C | D2 | (|) | (|) | DA | 15 | DA | 14 | (D7 ~ D0) | 2nd \$C00004 LG15 ~ LG0: Number of move word ' SA23 ~ SA1: Source address (in 68000) DA15 ~ DA0: Destination address (in VDP) CD2 ~ CD0: RAM selection #### 2. VRAM FILL FILL mode fills with same data from free even VRAM address. FILL for only How to set FILL (DMA): - M1 (Register #1) = 1 : DMA ENABLE - Increment number set to #15 (normally #1) - C. Fill size set to #19, #20. - DMA mode set to #23. - E. Destination address and FILL data set - *DMA start. - G. M1=0 after confirmation of inishing : DMA DISENABLE DMA starts after Step E M1 should be 1 in the DMA transfer; otherwise, we cannot guarantee the operation. Destination address is incremented with Register #15. VDP does not ask but open for PU but CPU cannot access VDP without PSG, HV counter, and status. You can realize end of DMA by DMA bit in status register. CONFIDENTIAL #### Register Setting. Register #1 has another bit. DA15 ~ DA0 Destination address D15 ~ FD0 FILL data When setting first and second by long word, first will be D31-D16 and second will be D15-D0. S-W/GENESIS MANUAL Rev. 2/20/92 # **Example 1** Fill data are word. Register #15 = 1. - 1. V-RAM address is even. - A. First, low side of Fill data are written in V-RAM address. - B. Second, upper side of Fill data are written in V-RAM+1. - C. V-RAM address is added register #15, written upper side Fill data in V-RAM at next each step. - 2. V-RAM address is odd. - D. First, upper side of FILL data are written in V-RAM address -1. - E. Second, low side of FILL data are written in V-RAM. - F. Same as (C.) You must rewrite data (C) into ADD + 1 after write data (B). **Example 2** Fill data are word. Register #15 = 2. #### VRAM address = even #### VRAM address = odd **Example 3** Fill data are byte. - V-RAM address is even (A) = (B) = (C) = BYTE DATA - 2. V-RAM address is odd (D) = (E) = (F) = BYTE DATA #### 3. VRAM COPY This function copies from source address to destination address by number of Copy byte. DMA Setting - A M1 (Register #1) = 1 : DMA ENABLE. - B. Number of copy bytes in #19, #20 - Source address and DMA mode in #23. - D. Destination address set. - . *DMA transfer. - F. After confirming DMA finish: M1 = 0 : DMA DISENABLE **PROPERTY OF SEGA** DMA starts when (D) above is finished. Apply M1=1 only during DMA transfer. In other cases, if M1 = 1 is set, there is no guarantee that it will function correctly. At the time of DMA transfer, the destination address is incremented by the set value of Register #15. During DMA transfer, although the VDP does not require CPU to make a bus available, no access is possible from CPU to VDP except for PSG, HV counter, Status Read. DMA transfer finish can be recognized by referring to the Status Register's DMA bit. **Example** With Transfer byte = 3 at the time of VRAM Copy | Source
Address | Register #15 = 1
Destination Addres | Register #15 = 2 Destination Address | |-------------------|--|---------------------------------------| | DATA 1 | DATA 1 | DATA 1 | | DATA 2 | DATA 2 | | | DATA 3 | DATA 3 | DATA 2 | | DATA 4 | | | | DATA 5 | | DATA 3 | | DATA 6 | | | | DATA 7 | | | | | | | Caution In the case of VRAM Copy, "read from VRAM" and "write to VRAM" are repeated per byte. Therefore, when the Source Area and Transfer Area are overlapped, the transfer may not be performed correctly. #229 Registers are as follows. Register #1 includes bits set for purposes other than DMA. Therefore, pay careful attention in this regard. SA15 - SA0: Source address DA15 - DA0: Destination address When setting first and second by long word, first will be D31~D16 and second will be D15~D0 #### 4. DMA TRANSFER CAPACITY Transfer quantity varies, depending on the Display Mode as follows: | DMA
Mode | Display
Mode | Screen Scanning | Transfer bytes per line | |-------------------|-----------------|---|-------------------------| | MEMORY
TO VRAM | H32 Cell | During effective screen
During V Blank | 16 bytes
167 bytes | | TO VRAIVI | H40 Cell | During effective screen
During V Blank | 18 bytes
205 bytes | | VRAM FILL | H32 Cell | During effective screen
During V Blank | 15 bytes
166 bytes | | VHAM FILL | H40 Cell | During effective screen
During V Blank | 17 bytes
204 bytes | | VRAM COPY | H32 Cell | During effective screen During V Blank | 8 bytes
83 bytes | | VITAIVI COPY | H40 Cell | During effective screen
During V Blank | 9 bytes
102 bytes | In the Memory to VRAM, in the case where CRAM and VSRAM are the destinations, number of words (not bytes) should apply. One line during Blank allows for data transfer to all the addresses of CRAM and VSRAM. Note that when calculating, the transfer quantity in one screen (1/60 sec) varies depending on the number of lines during Blank (refer to *Display Mode*) in the case of NTSC (video signal) and PAL systems. | Display Mode | No. of Horizontal Lines | |-----------------|-------------------------| | V28 Cell (NTSC) | 36 | | V28 Cell (PAL) | 87 | | V30 Cell (PAL) | 71 | Where Register #1 DISP=0, i.e., when on-screen display is not made, the Transfer quantity is the same as Transfer Bytes Per Line during Blanking. ## I. SCROLLING SCREEN There are two different scroll screens, A and B, which separately can scroll vertically and horizontally on a basis of a one-dot unit. In the horizontal direction, scrolling overall or based on a one cell unit or one line unit can be selected, and in the vertical direction, scrolling overall or in a two cell unit can be selected. Also, the scroll screen size can be changed on a basis of a 32 cell unit. For the scrolling screen display, the following register setting and VRAM are required: Scroll "A" Pattern Name Table Base Address Register #2 0 0 SA15 SA14 SA13 0 0 0 Scroll *B* Pattern Name Table Base Address Register #4 0 0 0 0 0 SB15 SB14 SB13 Mode Set Register #3 Register #11 0 0 0 0 IE2 VSCR HSCB LSCR Mode Set Register #4 Register #12 RS0 0 0 0 S/TE LSM1 LSM0 RS1 H Scroll Data Table Base Address Register #13 0 0 HS15 HS14 HS13 HS12 HS11 HS10 Scroll Size Register #16 0 0 VSZ1 VSZ0 0 0 HSZ1 HSZ0 **VRAM** Scroll A Pattern Name Table Max 8 Kbyte Scroll B Pattern Name Table Max 8 Kbyte H Scroll Data Table Max 960 byte **VSRAM** / Scroll Data Table Max 80 byte #### 1. SCROLLING SCREEN SIZE The screen size can be set by VSZ1, VSZ0, HSZ1, and HSZ0 (Register #16). The following six kinds can be set for both Scroll Screens A and B. 32*32/32*64/32*128 64*32/64*64 128*32 | VSZ1 | VSZ0 | Function | |------|------|------------| | 0 | 0 | V 32 cell | | 0 | 1 | V 64 celi | | 1 | 0 | Prohibited | | 1 | 1 | V 128 cell | | HSZ1 | HSZ0 | Function | |------|------|------------| | 0 | 0 | H 32 œll | | 0 | 1 | H 64 cell | | 1 | .0 | Prohibited | | 1 | 1 | H 128 cell | Scroll Screen's Pattern Name Table Address exits in the VRAM and is designated by Registers #2 and #4. Depending VRAM and Scroll Screen correspond to each other differently. # Example Register #16 = 00H: 32*32 cell # Example Register #16 = 11H: 64*64 cell | 0 | 1 | | 64 CELL | 62 | 63 | |------|----------------------|--------------------------------|----------------------------------|---|---| | 0000 | 0002 | `~ | ~ | 007c | 007e | | 080 | 0082 | | | 00fc | 00fe | | | | • | | | | | cell | | | | | | | | | | | | | | 1f00 | 1f02 | | | 1f7c | 1f7e | | 1fc0 | 1fc2 | ~ | ~ | 1ffc | 1ffe | | | 0000
0080
cell | 0000 0002
0080 0082
cell | 0000 0002 ~
0080 0082
cell | 0000 0002 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ | 0000 0002 ~ ~ 007c 0080 0082 00fc cell 1f00 1f02 1f7c | # Example Register #16 = 03H: 32*128 cell A value shown in a frame indicates an offset from the Pattern Name Table Base Address. CONFIDENTIAL ### 2. HORIZONTAL SCROLLING The Display Screen allows for scrolling overall or based on one cell unit, or on a dot by dot basis in one line unit. Either one of the above scrolling can be selected by HSCR and LSCR (Register #11). A setting applies to both Scroll Screens A and B. | HSCR | LSCR | FUNCTION | |------|------|-------------------------| | 0 | 0 | Overall Scrolling | | 0 | 1 | Prohibited | | 1 | 0 | Scroll in one cell unit | | 1 | 1 | Scroll in one line unit | HSCR, LCSR: Register #11 The effective scroll quantity is equivalent to 10 bits (000H ~ 3FFFH). Taking the Display Screen as standard, the scroll direction will be as follows: Horizontally scrolling quantity setting area: H Scroll Data Table is in VRAM. From the base address which was set by Register #13, set the scrolling quantity of Screens A and B alternately. Also, the scrolling quantity data setting position varies depending on the following mode (overall, 1 cell or 1 line). | 1 cell | Every 8th line starting from line 0 | |--------|-------------------------------------| | 1 Tine | All lines | | 00 | A - Scrolling Quantity of Screen A | Overall, Cell, Line | |-----|---------------------------------------
---------------------| | 02 | B - Scrolling Quantity of Screen B | Overall, Cell, Line | | 04 | A - Scrolling Quantity of Screen A | Line | | 06 | B - Scrolling Quantity of Screen B | Line | | 08 | A - Scrolling Quantity of Screen A | Line | | 0A | B - Scrolling Quantity of Screen B | Line | | Ī | | | | | · | | | | | | | 1C | A - Scrolling Quantity of Screen A | Line | | 1E | B - Scrolling Quantity of Screen B | Line | | 20 | A - Scrolling Quantity of Screen A | Cell, Line | | 22 | B - Scrolling Quantity of Screen B | Cell, Line | | | | | | | | | | | | | | 3FC | A - Scrolling Quantity of Screen A | Line | | 3FE | B - Scrolling Quarter of Screen B | Line | | | · · · · · · · · · · · · · · · · · · · | | D15~D10 can be freely utilized for program software. #### 3. VERTICAL SCROLLING The Display Screen allows for scrolling overall or every 2 cells in a dot unit. The setting can be done by VSCR (Register #11). A setting applies to both Scroll Screens A and B. | VSCR | Function | |------|--------------------| | 0 | Overali Scroll | | 1 | 2-Cell Unit Scroll | VSCR: Register #11 The scrolling quantity is equivalent to 11 bits (000H ~ 7FFH). However will be as shown below in the Interlace Mode. Non-Interlace: The effective scrolling quantity is equivalent to bits. Interlace 1: Same as above. Interlace 2: The effective scrolling quantity is equivalent to bits. Taking the Display Screen as standard, the scrolling direction will be as follows: Set the V Scroll quantity by VSFAM. Alternately set the scroll quantity of Screens A and B. Depending on the Scroll Mode, the Data setting positions differ. | Overall | Only at the beginning | |---------|-----------------------| | 2 cell | Set to all | **PROPERTY OF SEGA** | 00 | A - Scrolling Quantity of Screen A | 0, 1 Cell, Overall | |------------|------------------------------------|--------------------| | 02 | B - Scrolling Quantity of Screen B | 0, 1 Cell, Overall | | 04 | A - Scrolling Quantity of Screen A | 2, 3 Cell | | 06 | B - Scrolling Quantity of Screen B | 2, 3 Cell | | 08 | A - Scrolling Quantity of Screen A | 4, 5 Cell | | 0 A | B - Scrolling Quantity of Screen B | 4, 5 Cell | | 0C | A - Scrolling Quantity of Screen A | 6, 7 Cell | | 0E | B - Scrolling Quantity of Screen B | 6, 7 Cell | | | | | | | | | | | | | | 4C | A - Scrolling Quantity of Screen A | 38, 39 Cell | | 4E | B - Scrolling Quantity of Screen B | 38, 39 Cell | | | | • | D15~D11 is indefinite. #### 4. SCROLL PATTERN NAME cp0: vf: The Scroll Screen's name table is in VRAM and set by Registers #2 and #4. The Pattern Name requires 2 bytes (1 word) per cell the Scroll Screen. Depending on the Scroll Screen's size, VRAM and Scroll Screen correspond with each other differently. Refer to Scroll Screen Size. | Pattern Name pr | i cp1 | срО | vf | hf | pt10 |) pt | 9 | pt8 | (D | 15 ~ D8) | |-----------------|----------|-----------------|----------|-------------|-------|----------------|-----|-----|----|-----------| | | | | <u> </u> | | | | | | ł | l _ | | | pt7 p | 16 p | t5 F | t4 p | ot3 | pt2 | pt1 | P | tO | (D7 ~ D0) | | | pt7 p | pri: | Refer to | Priority | | | | | | | | | | pri:
cp1: | | | | oit (see | Color | Palette |) | | | | Color palette selection bit (see Color Palette) . V Reverse Bit 1: Reverse H Reverse Bit 1: Reverse hf: pt10 ~ pt0: Pattern Generator Number Reverse bits vf and hf allow for H and V reverse on cell unit basis. S-W/GENESIS MANUAL Rev. 02/20/92 ## 5. PATTERN GENERATOR Pattern Generator has VRAM 0000H as base address, and a pattern is expressed on an 8 x 8 dot basis. To define a pattern, 32 bytes are required. Starting from 0000H, it proceeds in the sequence of Pattern Generator 0, 1, 2, etc. The relationship between the display pattern and memory is as follows: | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |-----|---|---|---|---|---|---|---|---| | a t | 3 | | | | | | | | | b [| 3 | | | | | | | | | c [| 3 | | | | | | | | | d [| 3 | | | | | | | | | e (| 3 | | | | | | | | | fţ | 3 | | | | | | | | | g t | 3 | | | | | | | | | h t | 3 | C |) | 1 | | 2 | 2 | 3 | 3 | |----|----|----|------------|----|----|------------|----------------|------------| | | D7 | D0 | D7 · | D0 | D7 | D0 | D7 | D0 | | 00 | a1 | a2 | а3 | a4 | a5 | a 6 | a 7 | a 8 | | 04 | b1 | b2 | b 3 | b4 | b5 | 26 | b7 | b8 | | 80 | c1 | c2 | сЗ | с4 | с5 | c 6 | с7 | с8 | | 0C | d1 | d2 | d3 | d4 | d5 | d 6 | d7 | d8 | | 10 | e1 | e2 | е3 | e4 | e5 | e6 | e7 | 6 8 | | 14 | f1 | f2 | f3 | f4 | f5 | f6 | f7 | f8 | | 18 | g1 | g2 | g3 | g4 | g5 | g6 | g7 | g8 | | 1C | h1 | h2 | n3 | h4 | h5 | ħ6 | h7 | h8 | The display colors and memory relationship is as follows: | | VIII T | Ø5 | D4 | D3 | D2 | D1 | D0 | |------|--------|------|------|------|------|------|------| | COL3 | COL2 | COLI | COLO | COL3 | COL2 | COL1 | COLO | In Interlace Mode 2, one cell consists of 8×16 dots and therefore 64 bytes (16 long words) are required. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |-----|---|---|---|---|---|---|------------| | а 🗖 | | | | | | | | | р 🗖 | | | | | | | | | c 🗖 | | | | | | | | | d□ | | | | | | | | | е 🗖 | | | | | | | | | f 🗖 | | | | | | | a . | | g 🗖 | | | | | | | | | h□ | | | | | | | | | i□ | | | | | | | | | j 🗖 | | | | | | | | | k 🗖 | | | | | | | | | | | | | | | | | | m 🗖 | | | | | | | | | n 🖪 | | | | | | | | | ۰ 🗖 | | | | | | | | | р□ | 0 | | | | | | | | | | | | | | | | | 0 | 1 | 2 | |---|---|---| | _ | D7 | D0 | D7 | D0 | D7 | D0 | D 7 | D0 | |------------|-----|------------|--------------|----------------|----------------|------------|------------|----| | 00 | a1 | a2 | а3 | a4 | а5 | a6 | a7 | a8 | | 04 | b1 | b2 | b3 | b4 | b 5 | b6 | b7 | b8 | | 08 | c1 | с2 | ಚ | с4 | c 5 | 8 | c7. | с8 | | 0C | d1 | d2 | d3 | d4 | d5 | d6 | d7 | d8 | | 10 | e1 | e2 | е3 | 64 | e5. | e6 | e 7 | e8 | | 14 | f1 | f 2 | ß | f4 | f5 \ | \ 6 | f7 | f8 | | 18 | g1 | g2 | g3 \ | g4 | g5 | 9 6 | g7 | g8 | | 1C | h1 | 富 | ъз | ¥ | h5 | h6 | h7 | h8 | | 20 | 1 | i2 | 13 | i4 | i5 | i6 | i7 | i8 | | 24 | | j2 | j3 | 3 | j5 | j6 | j7 | j8 | | 28 | ķ | Ş | B | X4 | k5 | k6 | k7 | k8 | | 2 ¢ | 13 | 12 | 9 | 14 | 15 | 16 | 17 | 18 | | // 30 | m | m2 | m3 | m4 | m5 | m6 | m7 | m8 | | 34 | ∕h1 | n2 | n3 | n4 | n5 | n6 | n7 | n8 | | 38 | 01 | 02 | о3 | 04 | o 5 | 06 | 07 | 80 | | 3C | p1 | p2 | рЗ | p4 | p5 | р6 | р7 | p8 | S-WIGENESIS MANUAL Rev. 02/20/92 #### J. WINDOW For Window display, the following register setting and VRAM areas are required. Window Pattern Name Table and Base Address Register #3 | 0 | 0 | WD15 | WD14 | WD13 | WD12 | WD11 | 0 | |---|----------|------|------|------|------|------|---| | | <u> </u> | | | | | | | Mode Set Register Number 4 Register #12 | 1 | | | | | | | | | |---|-----|-----|---|---|------|------|------|-----| | Ì | RS0 | 0 | 0 | 0 | S/TE | LSM1 | LSMO | RS1 | | | | · · | 1 | | | | 1 | | Window H Position Register #17 | | RIGT | 0 | 0 | WHP5 | - WHP4 | WHP3 | WHP2 | WHP1 | |--|------|---|---|------|--------|------|------|------| |--|------|---|---|------|--------|------|------|------| Window V Position Register #18 | 1 | DOWN | ^ | | 146/57 | VVVVQ2 | \A/\/\D2 | WAND1 | WVPO | |---|------|---|-----|--------|--------|----------|-------|------| | İ | DOWN | U | , o | WYP4 | WVP | | | WWFO | VRAM: Window Pattern Name Table Maximum 4 Kbytes. #### 1. DISPLAY POSITION The Window Display Position is designated by Registers #17 and #18. Screen display can be divided on a unit basis of H2 cells and V1 cell. The dividing position varies depending on resolution. H 40 cells / V 28 cells mode Register #17 | RIGT | 0 | 0 | WHP5 | WHP4 | WHP3 | WHP2 | WHP1 | |------|---|---|------|------|------|------|------| | DOWN | 0 | 0 | WVP4 | WVP3 | WVP2 | WVP1 | WVP0 | Register #18 RIGT: 0 Displays Window from the left to H dividing position 1 Displays Window from the H dividing position to the right end DOWN: 0 Displays Window from the top end to the V dividing position. Displays Window from the V dividing position to the bottom end. WHP5 ~ WHP1: H dividing position WVP4 ~ WVP0: V dividing position | H Resolution | Dividing Position (WHP) | |--------------|-------------------------| | 32 cell | 0 ~ 16 (0 ~ 32 cell) | | 40 cell | 0 ~ 20 (0 ~ 40 cell) | | V Resolution | Dividing Position (WVP) | |--------------|-------------------------| | 28 cell | 0 ~ 28 | | 30 cell | 0 ~ 30 | # **Setting Example** Register #17: 000H+01H Register #18: 000H+10H Window from the left end to the second cell Window from the top end to the 16th cell DISPLAY SCREEN: 40 X 28 CELL MODE Register #17: Register #18: 80H+02H 80H+01H Window from the left end 4th cell to the right end Window from the 2nd cell to the bottom end Register #17: 80H+01H Window Register #18: 00H+10H Window Window from the 4th cell to the right end Window from the top end to the 16th cell DISPLAY SCREEN: 40 X 28 CELL MODE Register #17: 00H+02H Register #18: 80H+01H Window to the 4th cell from the left Window from the 2nd cell to the bottom end DISPLAY SCREEN: 40 X 28 CELL MODE **PROPERTY OF SEGA** #### 2. WINDOW PRIORITY Window Priority is handled in the same way as in Scroll A. Scroll A is not displayed in the area where Window is displayed. Also, only when Window is set to the left and Scroll A is moved in H direction, the character corresponding to two cells on the right side of the boundary between Window and Scroll A will be disfigured. There will be no malfunctioning when Window is set to the left side and Scroll A is moved only in the V direction; also when Window is set to the right side. Display of this portion will be disfigured. Therefore mask Scroll A by using high priority. #### 3. WINDOW PATTERN NAME Window Pattern Name Table is on VRAM, and the base address is designated by Register #13. The Pattern Name, the same as in Scroll
Screen, requires 2 bytes (1 word) per cell. Pattern Name | ori | | ср1 | ср0 | | vf | hf | pt10 | pt9 | pt8 | (D15 ~ D8) | |-----|---|-----|-----|---|-----|-----|------|-----|-----|------------| | pt7 | , | pt6 | pl | 5 | pt4 | pt3 | pt2 | pt1 | pt0 | (D7 ~ D0) | pri: Refer to Priority cp1: Color palette selection bit cp0: Color palette selection bit vf: hf: V reverse Bit 1: Reverse H Reverse Bit 1: Reverse pt10~pt0: Pattern Generator Number Pattern Name and VRAM relation varies depending on H 32 cell/40 cell mode. Pay careful attention to this point. 40~63 are not displayed #### Values shown are offset from the Base Address In the H40 Cell Mode, there exists the area for H64 cells. However, there will be no display from the 41st cell in the H direction. In the V28 Cell Mode, there will be no display from the V29th cell, and in the 30th Cell Mode, there will be no display from the 31st cell. ## K. SPRITE For Sprite Display, the following register setting and MRAM area are required. Sprite Attribute Table and Base Address VRAM: Sprite Attribute Table Maximum 640 Bytes ## 1. DISPLAY POSITION Sprite Position and Display Screen are as follows: When Sprite H position is 0, this is in a special mode. Therefore, pay careful attention to this point. | Resolution | H Position | Display Area | |------------|------------|--------------| | H32 Cell | 001∼ 1FFH | 080 ~ 17FH | | H40 Cell | With IEEE | 080 ~ 1BFH | | Resolution | | V Position | Display Area | | |------------|---------------|----------------|--------------|--| | | Non-interlace | 000 ~ 1FFH | 000 - 1554 | | | V28 Cell | Interlace 1 | 000~1FFH | 080 ~ 15 | | | | Interlace 2 | 000 ~ 3FFH | 100 ~ 2BFH | | | | Non-interlace | 000 455 | 000 | | | V30 Cell | Interlace 1 | - 000 ~ 1FFH → | 080 ~ 16FH | | | | Interlace 2 | 000 ~ 3FFH | 100-20FH | | When 0 is set to the SPRITE H POSITION, a low priority sprite on the same line will not be displayed. S-W/GENESIS MANUAL Rev. 02/20/92 #### 2. SPRITE ATTRIBUTE Sprite Attribute Table is on VRAM and the Base Address is designated by Register #5. Attribute requires 8 bytes (4 words) per Sprite, and indicates Display Position, Priority, Sprite Generator Number, and Attribute. Starting from the beginning of the Attribute Table, numbers are given in the sequence of Sprite 0, Sprite 1, Sprite 2, Sprite 3, etc. Priority between Sprites is not determined by the sequence of Sprite number, but by each Sprite's Link Data, and thus becomes programmable. Blank portions can be utilized freely for software. vp9 ~ vp0: V position hp8 ~ hp0: H position hs1, hs0: Sprite's H Size vs1, vs0: Sprite's V Size 1d6 ~ 1d0: / Link Data pri: Priority Bit (see Priority) cp1, cp0: Color palette selection bit (see Color Palette) vf: V Reverse Bit 1: Reverse hf: H Reverse Bit 1: Reverse sn10 ~ sn0: Sprite Pattern Generator Number By using Reverse Bit vf, hf, V and H Reverse per Sprite is possible. #### 3. SPRITE SIZE Per Sprite dot number can be set on a cell unit basis, by using vs1, vs0, vs1, and hs0. | ٧ | | | | | | | | |-----|-----|----------------|--|--|--|--|--| | vs1 | vs0 | Number of cell | | | | | | | 0 | 0 | 1 (8 dots) | | | | | | | 0 | 1 | 2 (16 dots) | | | | | | | 1 | 0 | 3 (24 dots) | | | | | | | 1 | 1 | 4 (32 dots) | | | | | | | | | Н | |------|-----|----------------| | his1 | hs0 | Number of cell | | 10 | 0 | 1 (8 dots) | | 0 | 1 | 2 (16 dots) | | 1 | 0 | 3 (24 dots) | | 1 | 1 | 4 (32 dots) | However, in Interlace Mode 2, one cell is comprised of 8 \times 16 dots, therefore, the number of V dots is two times (as compared to Interlace Mode 1). #229 #### 4. SPRITE'S DISPLAY CAPACITY The number of Sprite's maximum display varies depending on H resolution setting. | Resolution | No. of Display | No. of Display per Line | Display Dot per Line | |------------|-----------------|-------------------------|----------------------| | H32 celi | Max. 64 Sprites | Max. 16 Sprites | Max. 256 dots | | H40 cell | Max. 80 Sprites | Max. 20 Sprites | Max. 320 dots | Sprite is displayed in the sequential order of Priority. ### Example - With H size 1 cell, when 30 Sprites are intended to be displayed on the same line, up to 16 Sprites counting from the one having highest priority (in the H32 cell mode) and 20 Sprites in the H40 cell mode can be displayed, due to the limitation of display per line. - With H size 4 cells, when 16 Sprites are intended to be displayed on the same line, up to 8 Sprites, counting from the one having the highest priority (in the H32 cell mode) and 10 Sprites in the H40 cell mode can be displayed, due to the limitation of Display dots. - ▶ With H size 3 cells, when 16 Sprites are intended to be displayed in the same line, 11 Sprites, counting from the one having the highest priority (as for 11th one, however, only for 16 dots from the left end) in the H40 cell mode can be displayed, due to the limitation of the display dots. S-WAGENESIS MANUAL Rev. 02/20/92 #### 5. PRIORITY BETWEEN SPRITES Priority between Sprites is designated by each Sprite's Link Data. With Sprite 0 being Priority No. 1, the Sprite No. 2 written in the Link Data there will be Priority No. 2. Priority No. 2 Sprite's Link Data shows Priority No. 3 Sprite. Priority No. 3 Sprite's Link Data shows Priority No. 4 Sprite. In this way, Priority is sequentially designated by each Sprite's Link Data and thus it is in List form. The value that can be set in the Link Data is 0~ (number of maximum Display on one screen minus one). Be sure to set 0 to the lowest priority Sprite's Link Data. When 0 is given to the Sprite Link Data, List ends at that Sprite and the Planty will become the lowest. Even in the case that the number of Sprites linked to List is less than the maximum display quantity (64 or 80), the remaining Sprites not linked to Sprite will not be displayed. When value other than those specified is set to Link Data, or 0 is not set to the lowest Priority Sprite Link Data, ordinary functioning is not guaranteed. # **Setting Example** | | Link Data | |-----------|-----------| | Sprite 0 | 2 | | Sprite 1 | 10 | | Sprite 2 | 1 | | Sprite 3 | 4 | | Sprite 4 | 5 | | Sprite 5 | 15 | | Sprite 6 | | | Sprite 7 | 0 | | Sprite 8 | _ | | Sprite 9 | _ | | Sprite 10 | 11 | | Sprite 11 | 13 | | Sprite 12 | _ | | Sprite 13 | 3 | | Sprite 14 | (| | Sprite 15 | 7 | | Sprite 16 | | | | | The 11 Sprites shown in the Display Priority are displayed on the screen. Sprites No. 6, 8, 9, 12, 14, and 16 onward are not displayed because they are not linked with Link Data List. #### 6. SPRITE PATTERN GENERATOR The Sprite Pattern Generator with VRAM 0000H as Base Address expresses one pattern on a basis of 8x8 dots. 32 bytes are required to define one pattern. Every 32 bytes, one pattern is expressed in the sequence of Pattern Generator 0, 1, 2, etc. The relationship of Display Pattern and Memory is the same as in Pattern Generator. Also, Sprite Size and Pattern Generator relationship is as follows: ## L. PRIORITY Priority between Sprite, Scroll A, and Scroll B can be designated. Priority can be designated by each Pattern Name and Attribute Priority bit. It will be set for the Scroll Screen on a cell unit basis and for each Sprite. By combining each priority bit, Priority will be as follows, however, the Background Priority is always the lowest. | S pri | A pri | B pri | Priority | |-------|-------|-------|----------| | 0 | 0 | 0 | S>A>B>G | | 1 | 0 | 0 | S>A>B>G | | 0 | 1 | 0 | A>S>B>G | | 1 | 1 | 0 | S>A>B>G | | 0 | 0 | 1 | B>S>A>G | | 1 | 0 | 1 | S>B>A>G | | 0 | 1 | 1 | A>B>S>G | | 1 | 1 | 1 | S>A>B>G | A: Scroll A Also, by combining S/Ten (Register #12) and the above priority, Shadow-Highlight effect function can be utilized. PROPERTY OF SEGA B: Scroll B G: Background The above shows Priority situation of Sprite, Scroll A, Scroll B and Background. The dot to which Color Code 0 is designated is transparent. Therefore, either one of Scroll Screen A, Scroll Screen B, or Background (the priority of which is one step lower than the transparent one) will appear ## S/TEN = 1 Sprite Color Palette $0 \sim 3$, Color Code $0 \sim 15$ Color Palette 3, Color Code $0 \sim 13$ Where S/TEN = 1, when the Priority bit of both Scroll A and Scroll B is 0, there will be Shadow. For the color status, refer to the color palette. ## S/TEN = 1 Sprite Color Palette 3 , Color Code 15 The dots for the Sprite Color Code 15 work as a Shadow operator on the screen, the Priority of which is lower than the Sprite. Since Sprite dot works as an operator, this will not be displayed. ## S/TEN = 1 Sprite Color Palette 3 , Color Code 14 The dots of Sprite Color Code 5 work as an operator on the screen, the priority of which is lower than Sprite. Since Sprite dots work as an operator, this will not be displayed. When SPRITE is not related to PRIORITY, the following PRIORITY applies: ## M. COLOR PALETTE One dot is comprised of 4 bits and can designate the 0-15 colors. Also, 0-3 color palette can be designated by Scroll screen on a cell basis and by each Sprite. CRAM data are as follows. Since each of R, G and B has 3 bits, colors can be freely selected out of 512 colors. DATA 0 0 0 0 B2 B1 B0 0 (D15~D8) G2 G1 G0 0 R2 R1 R0 0 (D7~D0) The relationships between CRAM address, palette, and color code are as follows. However, in the case of each palette's color code 0, the color for the Scroll A, Scroll B Window, and Sprite is See Through irrespective of RBG designation. | ADDRESS | BLUE | GREEN | RED | PALETTE | CODE | REMARKS | |--|------|-------|-----|---------|-------------------------------|---| | 00H
02H
04H
:
:
:
1AH
1CH | | | | 0 | 0
2

13
4
5 | The 0-15 colors
designated by RGB
will be displayed | | 20H
:
3EH | | | | 1 | 0
:
15 | Same as Palette 0 | | 40H
:
5EH | | | | 2 | 0
:
15 | Same as Palette 0 | | 60H
62H
:
7 A H
7CH
7EH | | | | 3
 0
1
:
13
14
15 | Same as Palette 0 For 14 and 15, refer to Priority | **PROPERTY OF SEGA** S-WAGENESIS MANUAL Rev. 02/20/92 CONFIDENTIAL ## N. INTERLACE MODE Raster Scan Mode can be changed by setting LSM0 and LSM1 (RGB #12). | LSM1 | LSM0 | Raster Scan Mode | |------|------|--| | 0 | 0 | Non-interlace mode | | 0 | 1 | In the non-interlace mode, the same pattern is displayed on the rasters of even and odd numbered files. (Interlace 1) | | 1 | 1 | In the interlace mode, the different pattern is displayed on the rasters of even and odd numbered files. (Interlace 2) | In the interlace mode and Interlace 1, one cell is defined by 8x8 dots and in Interlace 2 8x16 dots. For Display, one cell consists of 8x8 dots in the non-interlace mode, and in the interlace mode, 8x16 dots. In any case, number of cells in one screen are the same. Depending on the type of display, in the case of interlace display, there may occur a serious blur in the vertical direction. Therefore, when using the display, pay careful attention in this regard. ## III. BACKWARD COMPATIBILITY MODE In the case of Backward Compatibility Mode, the Mega Drive differs from the original Mark III and Master System in the following points: ## A. MARK III (MS-Japan) #### OS-ROM is not incorporated ROM cartridge/card selections are made by hardware in the same manner as in the case of Mark III. Start-up slot number is not written in 0C000H. Start-up SEGA logo is not displayed. #### FM sound source is not incorporated FM sound is incorporated in MS-Japan (standard) and Mark III (optional) (OPLL), however, Mega Drive has no option for that, although connection is possible. Consider the Mega Drive's Japanese specifications as that of Mark III with MS-Japan's Joystick Port, or as MS-Japan without FM sound source and OS ROM. #### **B. MASTER SYSTEM** #### OS-ROM is not incorporated 0C000H-0DFFFH RAM is not clear on power-up. RAM 0C000 has no meaningful value. Start-up Sega logo is not displayed. #### FM sound source is not incorporated FM sound source is incorporated in MS by option (OPLL). However, Mega Drive has no option, although connection is possible. Please regard the Mega Drive overseas version as a Master System without an Operating System ROM. #### C. RAM BOARD In the Mega Drive's Mark III and Master System backward compatibility mode, the RAM board for development (for which D-RAM was used) cannot be used due to the problem of Refresh. The other boards for development (which utilize S-RAM) can be used without any problem. ## IV. SYSTEM I/O Mega Drive System I/O area assignment starts from \$A00000, with the Z80 sub-CPU's memory area. #### A. VERSION NUMBER Indicates the Mega Drive's hardware version. | * A 4 | 0001 | |--------------|------| | THE I | | | _ | | | | | | | | | |---|------|------|------|-----|------|------|------|------| | | MODE | VMOD | DISK | RSV | VER3 | VER2 | VER1 | VER0 | Mode (R) 0: Domestic Model 1: Overseas Model VMOD (R) 0: NTSC CPU clock 7.67 MHz 1: PAL CPU clock 7.60 MHz 0: FDD unit connected Disk (R) 1: FDD unit not connected RSV (R) Currently not used VER 3~0 (R) Mega Drive version is indicated by \$0-\$F. The present hardware version is indicated by \$0. ## B. I/O PORT The Mega Drive has the three general purpose 1/0 ports: Cirl 1, Zirl 2, and Exp. Although each port differs from the others in physical shape, it functions in the same manner. Each port has the following five registers for control. Data (Parallel data) R/W Ctrl S-Ctrl (Parallel control) R/W **TxData** (Serial control) (Txd data) R/W R/W The relationship between REGISTERs is as follows: f/O > I/O change PIS: PARALLEL SERIAL MODE change INT: INTERRUPT CONTROL S>P SERIAL-PARALLEL CONVERSION PS: PARALLEL-SERIAL CONVERSION ## Mapping is as follows: | \$A10003 | : | Data 1 | (Ctrl 1) | |----------|---|----------|----------| | \$A10005 | : | Data 2 | (Ctrl 2) | | \$A10007 | : | Data 3 | (Exp) | | \$A10009 | : | Ctrl 1 | | | \$A1000B | : | Ctrl 2 | | | \$A1000D | : | Ctrl 3 | | | \$A1000F | : | TxData 1 | | | \$A10011 | : | RxData 1 | | | \$A10013 | : | S-Ctrl 1 | • | | \$A10015 | : | TxData 2 | | | \$A10017 | : | RxData 2 | | | \$A10019 | : | S-Ctrl 2 | | | \$A1001B | : | TxData 3 | | | \$A1001D | : | RxData 3 | | | \$A1001F | : | S-Ctrl 3 | | Both Byte and Word access are possible. However, in the case of Word access, only the lower byte is meaningful. Data shows the status of each port. The I/O direction of each bit is set by Ctrl and S-Ctrl. | | | | | | | | 3 | 77 | |------|-----|-----|------|------------|-----|------|-------|-----| | DATA | PD7 | PD6 | PD5 | PD4 | PØ3 | PD2 | ž do. | PD0 | | | | | | | - | | | | | • | | PD7 | (RW) | | PD3 | (RW) | RIGHT | | | | | PD6 | (RW) | TH . | PD2 | (HW) | LEFT | | | | | PD5 | (RW) | Τ Έ | PD1 | (RW) | DOWN | | | | | PD4 | (RW) | TL | PDQ | (RW) | UP | | CONFIDENTIAL Ctrl designates the I/O direction of each port and the Interrupt Control of TH. | CTRL | INT | PC6 | PC5 | PC4 | РСЗ | PC2 | PC1 | PC0 | | |------|-----|------|-------|--------------------|---------------------|-----|-----------------|-----|--| | | INT | (RW) | | | ohibited | | | | | | | PC6 | (RW) | 0: PD | -INT All
6 Inpu | t Mode | | | | | | | PC5 | (RW) | 0: PE | 5 Inpu | | | | | | | | PC4 | (RW) | 0: PD | 4 Inpu | | | | | | | | PC3 | (RW) | 0: PC | 3 Inpu | | | | | | | | PC2 | (RW) | 0: PC | 2 Inpu | | | | į | | | | PC1 | (RW) | 0: PC | 1 Inpu | out Mode
t Mode | : | | | | | | PC0 | (RW) | | | out Mode
It Mode | • | > _ (| | | | | | | 1: P[| 0 Outp | out Mode | • | | | | S-Ctrl is for the status, etc. of each port's mode change, baut rate, and serial. Ctrl designates the I/O direction of each port and the Interrupt Control of TH. | S-CTRL | BPS1 | BPS0 | SIN | SOUT | RINT | REAR | RADY | TFUL | |--------|------|--------------|-------------|------------------------|------------|----------|------|------| | | SIN | (RW) | | R - Parall
R - Sena | | | | | | | SOUT | (RW) | 0; TL | Parail | el Mode | | | | | | RINT | (RW) | 0: R) | Serial
d Ready | / - Interr | | | | | | RERR | (R) | 0: | Ready | / - Interr | upt Allo | wea | | | | RRDY | (R) | ``0: | dError | | | | | | | TFUL | (R) | 1: R)
0: | dReady | | | | | | | | | 1: Tx | dFull | | | | | | | BPS1 | BPS0 | · b | ps | | | | | | | 0 | 0 | i | 800 | | • | • | | | | 0 | 0 | | 400
200 | | | | • | | | | 1 1 | 1 | 300 | | | | | #### C. MEMORY MODE The Mega Drive is able to generate internally the Refresh signal for the D-RAM development cartridge. When using the development cartridge, set to D-RAM mode. In the case of a production cartridge, set to ROM mode. Only D8 of address \$A11000 is effective and for Write only. \$A11000 D8 (W) 0: ROM mode 1: D-RAM mode Access to \$A11000 can be based on byte. #### D. Z80 CONTROL #### 1. Z80 BusReq When accessing the Z80 memory from the 68000, first stop the Z80 by using BusReq. At the time of power on reset, the 68000 has access to the \$\infty\$80 bus. \$A11100 D8 (W) 0: BusReq cancel 1: BusReg request (R) 0: CPU function stop accessible 1: Functioning Access to Z80 area in the following manner. - a. Write \$0100 in \$A11100 by using Word access - b. Check to see that D8 of \$A11100 becomes 0 - c. Access to Z80 area. - d. Write \$0000 in \$A11100 vusing a Word access. Access to \$A11100 can also be based on byte. ## 2. Z80 Reset The 68000 may also reset the Z80. The Z80 is automatically reset during the Mega Drive hardware's power or reset sequence. Reset request Reset cancel Access to \$A11100 can also be based on byte. S-WIGENESIS MANUAL Rev. 02/20/92 ## E. Z80 AREA Mapping is performed starting from \$A00000 for Z80, a sub-CPU. As viewed from 68000, the memory map will be as follows: | \$A00000 | Sound RAM | | |----------|---------------|--| | \$A02000 | Prohibited | | | \$A04000 | | | | \$A04004 | Sound Chip | | | | Prohibited | | | \$A06000 | | | | \$A06002 | Bank Register | | | | Prohibited | | | \$A08000 | | | | | Prohibited | | | | | | 1. Sound RAM This is for the Z80 program. Access from 68000 by byte. 2. Sound Chip This is the mapping area for FM sound source (YM2612). When accessing from 68000, use byte, due to timing problem. 3. Bank Register Access to the 68000 side Memory Area from Z80 will be based on a 32 K byte unit. At this time, this register sets which bank is to be accessed. Registering from 68000 can be set, however, do not access to Z80 Bank Memory Area by 68000. ## **Setting Method** When accessing to the 68000 side addresses from Z80 side, all the addresses can be classified into Banks. Bank can be set by writing 9 times in 0 bit of 6000 (Z80 address). The 9 bits correspond to 68000 address 15-23 as shown below: #### v. VRAM MAPPING In VRAM, there are various tables and pattern generators as stated below. Among those, the base address of Pattern Generator Table and Sprite Generator Table are 0000H and fixed. However, the other base addresses can be freely assigned in VRAM by setting VDP Register. Also, Area can be overlapped, therefore, Table can be commonly used by Scroll screen and Window, for example. - Scroll A Pattern Name Table, maximum 8 K byte Base address designated by Register #2. - Scroll B Pattern Name Table, maximum 8 K byte Base address designated by Register #4. - Window Pattern Name Table, varies by H resolution Base address designated by Register #3. - H Şcroll Data Table, 1 K byte Base address designated by Register #13. - Sprite Attribute Table, varies by H resolution Base address designated by Register #5. - Pattern Generator Table Base address is 0000H (fixed). - Sprite Generator Table Base address is 0000H (fixed) There are 1 K bytes for H Scroll Table, nowever, as 15 display 896 bytes in V28 Cell Mode and 960 bytes in V30 Cell Mode. There are 2 K bytes for Window Pattern Name Table in H32 Cell Mode, and 4 K byte area in H40 Cell Mode. For
details, refer to Window. There are 512 bytes for Sprite Attribute Table in H32 Cell and 1 K byte area in H40 Cell Mode. However, as for display, there are 640 bytes in H40 Cell Mode. ## Setting examples #### H32 Cell Mode - Scroll A Pattern Name Table 8 K bytes from 0C000H: Register #2 = \$30 - Scroll B Pattern Name Table 8 K bytes from 0E000H: Register #4 = \$07 - Window Pattern Name Table 2 K bytes from 0B000H: Register #3 = \$2C - H Scroll Data Table - 1 K byte from 0B800H: Register #13 = \$2E - Sprite Attribute Table 512 bytes from 0BE00H: Register #5 = \$5F S-W/GENESIS MANUAL Rev. 02/20/92 Unoccupied area is used as Pattern Generator and Sprite Generator. ## H40 Cell Mode Scroll A Pattern Name Table 8 K bytes from 0C000H: Register #2 = \$30 Scroll B Pattern Name Table 8 K bytes from 0E000H: Register #4 = \$07 Window Pattern Name Table 4 K bytes from 0B000H: Register #3 = \$2C H Scroll Data Table 2 K bytes from 0AC00H: Register #13 = \$2B Sprite Attribute Table 1 K byte from 0A800H: Register #5 = \$54 Unoccupied area is used as Pattern Generator and Sprite Generator CONFIDENTIAL ## **Precautions for M5 Software Programming** When programming the M5 software, pay attention to the following: - 1. The program od DMA (RAM, ROM→VRAM, CRAM, VSRAM) should be resident in RAM or it should be as in LIST1 for example. However, in either one of the above two cases, a long word access is not possible as regards the last VRAM address set. - 2. ID should be as in the next page. - 3. Put LIST2 at your program's start. This is the U.S. security software. #### LIST 1 #### DMA-RAM: lea ; vdp cmd = \$c00000 ; An = Address Register ; Set source Address to VDP Register ; Set Data Length to VDP Register move.1 xx,ram0 ; xx: Destination Address ; ram0: Work RAM move.w ram0, (An) move.w ram0+2, (An) Pay careful attention to the sequential order of st word and 2nd word. Destination Address should be set by Word and not by Long Word. ## LIST 2 ?0: move.b \$a10001,d0 andi.b #\$0f.d0 beq.b ?0 move.1 # 'SEGA' \$a14000 Get version number If not version #0 Output ASCII CONFIDENTIAL ## **ROM Cartridge Data For Mega Drive** ## Write in ROM's 100H-1FFH | 100H: | 'SEGA MEGA DRIVE ' | 1 | |-------|------------------------------|----| | 110H: | '(C) SEGA 1988.JUL' | 2 | | 120H: | Game Name (domestic) | 3 | | 150H: | Game Name (overseas) | 4 | | 180H: | 'GM XXXXXXXX' | 5 | | 18EH: | \$XXXX | 6 | | 190H: | Control Data | 7 | | 1A0H: | \$000000, \$XXXXXX | 8 | | 1A8H: | \$FF0000, \$FFFFFF | 9 | | 1B0H: | External RAM Data | 10 | | 1BCH: | Modem Data | 11 | | 1C8H: | Memo | 12 | | 1F0H: | Country in which the product | 13 | | | can be released | | - 1: SEGA, system name and Title in common with all ROMs, - 2: Copyright notice and year/month of release (firm name in ASCH, 4 character). - 3: Game name for domestic (JIS KANJI Code o.k.). - 4: Game name for overseas market (JS KANJI Code o.k.) - 5: Type of cartridge and products, number, version number: Type Game: GM Education: Al Number Product No. Version Data varies depending on the type of ROM or software version - 6. Check Sum - 7. I/O use support data Joystick for MS : 0 **Joystick** . . Keyboard : **K** Serial (S232C) : R Printer : P : T Tablet . ! Control Ball : B : V Paddle Controller : F CDROM : C ROM Capacity Start Address, End Address RAM Capacity Start Address, End Address 10. When no external RAM is mounted, fill the address by a space code; when it is mounted, do the following: 1B0H: dc.b 'RA',%1x1yz000,%00100000 X 1 for Backup and 0 if not Backup yΖ 10 if even address only, 11 if odd address only 1B4H: RAM start address, RAM end address 11. If corresponding to modem, fill it by space code; if not, do the following 1BCH: dc.b 'MO' ,'xxxx' ,'yy.z' XXXX Firm name, the same as in 2 уу Modem number Z Version 13. Data on the countries in which the product can be released Japan : J USA Europe : U : E Be sure to input a space code in the unoccupied 1-709-13 space #### How to Obtain a Check Sum The Check Sum obtaining program is shown as follows. The program starts with OFF8000H, RAM space. First, fill game capacity by -1 (0FFH) and then load all of the programs. Next, load the Check Sum program and run the program from 0FF8000H. After a while, stop running the program. At this time, the lower Word of Data Register 0 (d0) is the Check Sum value. Note that Break in Memory should be cancelled in advance. Also, when burn-ins to ROM, first fill the game capacity by -1 (0FFH). | end_addr
start: | org | equ
-\$8000 | \$1a4 | | | |--------------------|------|---|---|-----------|--| | start. | ●?12 | move.1 addq.1 movea.1 sub.1 asr.1 move subq.w swap moveq add dbra dbra dbra nop nop | (a0) ,d1
#\$1,d1
#\$200,a0
a0,d1
#1,d1
d1,d2
#\$1,d2
d1
#\$0,d0
(a0)+,d0
d2,?12
d1,?12 | ; counter | | | | ?1e: | nop
nop
nop
bra b | ?1e | | | | | | | | • | | ## **Memory Mapping for Emulation** For the 68000 Emulation All address should be disabled initially: 0 to 0FFFFFF Required areas should then be enabled as follows: - 1. Program and Data are in 0 to 007FFFF - 2. S-RAM is for Z80 in 0A00000 to 0A01FFF - 3. FM sound chip interface is in 0A04000 to 0A04FFF - 4. I/O and Z80 control port are in 0A10000 to 0A11FFF - 5. VDP and sound control port are in 0C00000 to 0C00FFF - 6. Scratch RAM isin 0FF0000 to 0FFFFFF RAM Card (No. 171-5642-02) This board has two memory areas: Main Memory Backup Memory (D-RAM) \$000000 - \$0FFFFF (S-RAM) \$200000 - \$203FFF - Initialize Write 0100H into \$0A11000 Write 1 into \$0A130F0 (Green LED light up) - 2. Write Protect Write 3 into \$0A130F0 (Red LED light up) - 3. Read/Write Write 1 into \$0A130F0 (Red LED turns off) - 4. Note: Emulator access to these ports should be enabled before the writes, then disabled after words. ## Mega Drive Registers Fixed Bits (40 Cell and NTSC Mode) | RO | . 0 | 0 | 0 | | 0 | .1 | 0 | 0 | | |------|-----|---|-------------|---|---|----|---|---|---| | 1 | 0 | | - | | 0 | 1 | 0 | 0 | | | 2 | 0 | 0 | | | | 0 | 0 | 0 | | | 3 | 0 | 0 | | | | | | 0 | • | | 4 | 0 | 0 | 0 | 0 | 0 | | | | | | 5 | 0 | | | | · | | | | | | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 7 | 0 | 0 | | | | | | | | | 8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 10 | | | | | | | | | : | | 11 | 0 | 0 | 0 | 0 | 0 | | | | | | 12 | 1 | - | - | | | | | 1 | | | 13 | 0 | 0 | | | | | | | | | 14 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 15 | | | | | | | | | | | 16 | 0 | 0 | | | 0 | 0 | | | | | 17 | | 0 | 0 | | | 1 | \ | | | | 18 | | 0 | 0 | | | | | | | | 19 | | | | | | | | | - | | 20 | | | | | | | | | | | . 21 | | | | | | | | | | | 22 | | | | | | | 1 | | | | 23 | | | | | | | | | | | | | | | | L | | | | J | * DMA cannot be performed emulated ROM or RAM on most ICEs. S-W/GENESIS MANUAL Rev. 02/20/92 # GENESIS SOUND SOFTWARE MANUAL ## **INDEX** - I. Z80 MAPPING - A. Z80 Memory Map - B. Interrupt - II. 68K CONTROL OF Z-80 - A. Z80 Start-up - B. Z80 Handshake - III. FM SOUND CONTROL - A. 68K Access FM Chip - B. Z80 Access FM Chip - **IV. PSG CONTROL** - V. D/A CONTROL ## I. Z80 MAPPING ## A. Z80 Map We show the memory at right. I/O is contained in memory map. ## 1. Program Area Program, data and scratch are in 0 to 1FFFH, in S-RAM. ## 2. BANK From 8000H-FFFFH is window of 68K memory. Z-80 can access all of 68K memory by BANK switching. BANK select data create 68K address from A15 to A23. You must write these 9 bits one at a time into 6000H serially, byte units, 7F11 using the LSB. | | | | | | | | | | | WA. | | M A | WEE E | <u> </u> | | | |-----|----|----|----|----|----|--------|----------------|-----|--------|-----|---|-----|-----------|----------|-------------|--| | 1st | D7 | D6 | D5 | D4 | D3 | D2 | D ¹ | DO | | - 1 | | 7 | 7111 | | | | | 2nd | | | | | | | | | | | | | | | | | | 1 | | | | | | | | | | J) | | | | | | | | 1 | | | | | | | | | | | L | | | | | | | 9th | | | | | | | | | \neg | | | | ********* | | | | | · | | | | | | | | | | | | | | 1 | | | | | | | | | | | ₩, | | | | 1 | | | | | | | | | | | | | . Alli | | A23 | | | | | | | A15 | | ## 3. I/O 4000H FM1 register select (Channel 1-3) 4001H FM1 DATA 4002H FM2 register select (Channel 4-6) 4003H FM2 DATA PSG address is in 7F11H. ## B. Interrupt #2-80 gets the only VIDEO vertical interrupt. This interrupt is generated 16ms period and 64ms length. Genesis Sound Software Manual February 21, 1992 ## II. 68K CONTROL OF Z-80 #### A. Z80 Start-Up Z-80 Operation Sequence: - 1. BUS REQ ON - 2. BUS RESET OFF - 3. 68K copies program into Z-80 S-RAM - 4. BUS RESET ON - 5. BUS REQ OFF - 6. BUS RESET OFF #### **BUS REQUEST** - BUS REQ ON DATA 100H (WORD) → \$A11100 - BUS REQ OFF DATA 0H (WORD) → \$A11100 ## **RESET Z-80** - RESET ON DATA 0H (WORD) → \$A11209 - RESET OFF DATA 100H (WORD) \$A11200 This period requires 26ms. Also FM sound source is cleared at the same time. # CONFIRMATION OF BUS STATUS This information is in \$A11100, bit 0. - 7 Z-80 is using - 1 68K can access ## B. Z80 Handshake If you access the HANDSHAKE area (A00000 - A07FFF) you must use BUS REQ. 68K has to access the Z-80 S-RAM by byte. ## III. FM SOUND CONTROL ## A. 68K Accesses the FM Source 68K needs BUS REQ when accessing the FM source, because this memory is controlled by Z-80. ## B. Z80 Accesses the FM Source Z-80 normally controls the FM (4000H - 4003H). ## **IV. PSG CONTROL** PSG accepts access of 68K and Z-80 any time, but you have to coordinate 68K and Z-80 accesses. PSG is in \$C00011 from 68K and in 7F11H from Z-80. Genesis Sound Software Manual February 21, 1992 #### **OVERVIEW** The Yamaha 2612 Frequency Modulation (FM) sound synthesis IC resembles the Yamaha 2151 (used in SEGA's coin-operated machines) and the chips used in Yamaha's synthesizers. Its capabilities include: - · 6
channels of FM sound - An 8-bit Digitized Audio channel (as replacement for one of the FM channels) - Stereo output capability - · One LFO (low frequency oscillator) to distort the FM sounds - 2 timers, for use by software. To define these terms more carefully, an FM channel is capable of expressing, with a high degree of realism, a single note in almost any instrument's voice. Chords are generally created by using multiple FM channels. The standard FM channels each have a single overall frequency and data for how to turn this frequency into the complex final waveform (the voice). This conversion process uses four dedicated channel components called "operators," each possessing a frequency (a variant of the overall frequency), an envelope, and the capability to modulate its input using the frequency and envelope. The operator frequencies are offsets of integral multiples of the overall frequency. There are two sets of three FM channels, named channels 1 to 3 and 4 to 6, respectively. Channels 3 and 6, the last in each set, have the capability to use a totally separate frequency for each operator rather than offsets of integral multiples. This works well (we believe) for percussion instruments, which have harmonics at odd multiples such as 1.4 o 1.7 of the fundamental. The 8-bit Digitized Audio Channel (DAC) exists as a replacement of FM channel 6, meaning that turning on the DAC turns off FM channel 6. Unfortunately, all timing must be done by software — meaning that unless the software has been very cleverly constructed, it is impossible to use any of the FM channels at the same time as the DAC. Stereo output capability means that any of the sounds, FM or DAC, may be directed to the left, the right, or both outputs. The stereo is output only through the headphone jack. The LFO, or Low frequency Oscillator, allows for amplitude and/or frequency distortions of the FM sounds. Each channel elects the degree to which it will be distorted by the LFO, if at all. This could be used, for example, in a guitar solo. Finally the system has two software timers which may be used as an alternative to the Z80 VBLANK interrupt. Unfortunately, these two timers do not cause interrupts — they must be read by the software to determine if they have finished counting. ## A LITTLE BIT ABOUT OPERATORS There are four dedicated operators assigned to every channel, with the following properties: - An operator has an input, a frequency and an envelope (with which to modify the input), and an output. - The operators have two types: those whose outputs feed into another operator, and those that are summed to form the final waveform. The latter are called "slots." - The slots may be independently enabled, although Sega's software always enables or disables them all simultaneously. - Operator one may feed back into itself, resulting in a more complex waveform. These operators may be arranged in eight different configurations, called "algorithms." Following is a diagram of the algorithms. Genesis Sound Software Manual February 21, 1992 Algorithm 0 - distortion guitar high hat chopper" (?) bass Algorithm 1 - harp, PSG (Programmable Sound Generator) sound Algorithm 2 - Bass, electric guitar brass, piano, woods Algorithm 3 - strings, tolk guitar, chimes Algorithm 4 - flute, bells, chorus, bass drum, snare drum, tom-tom Algorithm 5 brass, organ Algorithm 6 - xylophone, tom-tom, organ, vibraphone, snare drum, base drum Algorithm 7 - pipe organ ### **REGISTER OVERVIEW** The system is controlled by means of a large number of registers. General system registers are: - timer values and status, software use - LFO enable and frequency, to distort the FM channels - DAC enable and amplitude - output enables for each of the six FM channels - number of frequencies to be used in FM channels 3 and 6. Usually, an FM channel has only one overall frequency, but if so elected, FM channels 3 and 6 use four separate frequencies, one for each operator. The remainder of the registers apply to a single FM channel, or to an operator in that channel Registers that refer to the channel as a whole are: - frequency number (in the standard case) - algorithm number - extent of self-feedback in operator 1 - output type, to L, R, or both speakers. This can only be heard if headphones are used. - the extent to which the channel is distorted by the LFO. Registers that refer to each operator make up the remainder. The four operators' connections are determined by the algorithm used, but the envelope is always specified individually for each operator. In the case of FM channels 3 and 6, the frequency may be specified individually for each operator. Genesis Sound Software Manual February 21, 1992 ### **ENVELOPE SPECIFICATION** The sound starts when the key is depressed, a process called "key on." The sound has an attack, a strong primary decay, followed by a slow secondary decay. The sound continues this secondary decay until the key is released, a process called "key off." The sound then begins a rapid final decay, representing, for example, a piano note, after the key has been released and the damper has come down on the strings. The envelope is represented by the above amplitudes and angles, and a few supplementary registers. Used in the above diagram are: - TL Total level, the highest amplitude of waveform. - AR Attack rate, the angle of initial amplitude increase. This can be made very steep if desired. The problem with slow attack rates is that if the notes are short, the release (called "key oft") occurs before the note has reached a reasonable level. - DIR The angle of initial amplitude decrease. - Till The amplitude at which the slower amplitude decrease starts. - The angle of secondary amplitude decrease. This will continue indefinitely unless "key off" occurs. - RP The final angle of amplitude decrease, after "key off." ## Additional registers are: RS — Rate scaling, the degree to which envelopes become shorter as frequencies become higher. For example, high notes on a piano fade much more quickly than low notes. AM — Amplitude Modulation enable, whether or not this operator will allow itself to be modified by the LFO. Changing the amplitude of the slots changes the loudness of the note; changing the amplitude of the other operators changes its flavor. SSG-EG — A proprietary register whose usage is unknown. It should be set to zero. The FM-2612 may be accessed from either the 68000 or the Z-80. In both cases, however, the bus is only 8 bits wide. The FM-2612 is accessed through memory locations 4000H - 4003H in the Z80 case, or A04000H A04003H in the 68000 case. These will be referred to as 4000 to 4003. The internal registers of the FM-2612 are divided as follows: To write to Part I, write the 8-bit address to 4000 and the data to 4001. To write to Part II, write the 8-bit address to 4002 and the data to 4003. Caution: Before writing, read from any address to determine if the YM-2612 I/O is still busy from the last write. Delay until Bit 7 returns to 0. Caution: In the case of registers that are "ganged together" to form a longer number — for example the 10-bit Timer A value or the 14-bit frequencies — write the high register first. READ DATA: Reading from any of the four locations. BUSY - 1 if busy 0 if ready for new data. OW 🚚 1 if the timer has counted up and overflowed. See Register 27H. ## PART I MEMORY MAP Each of 30H-90H has twelve entries, three channels x four operators. Channels 1-3 become channels 4-6 in Part II. # ART I MEMORY MAP (cont.) 3DH CH2, OP4 3EH CH3, OP4 | | AOH+ | | | FREQ. NUM | | | |-----|------|---|----------|---------------|----------|----------------------| | | A4H+ | X | × | BLOCK | FREC |). NUM | | | ABH+ | | CH 3 SUF | PPLEMENTARY F | REQ. NUM | | | | ACH+ | X | x | CH 3 SUP | P BLOCK | CH3 SUPP
FREQ NUM | | . J | B0H+ | Х | X | FEED | BACK | ALGORITHM | | | B4H+ | L | R | AMS | Х | FMS | Each of the above has three entries. All follow the pattern A0H CH1 CH2 CH3 with the exception that A8H and ACH follow the pattern A8H CH3, OP2 CH3, OP3 CH3, OP4 "PART II" is a duplication of 30H-B4H, where channels 1-3 are replaced by The Registers: 22H X X X X LFO EN PREQ LFO EN — 1 is enabled, 0 disabled LFO FREQ The LFO (Low Frequency Oscillator) is used to distort the FM sounds' amplitude and phase. It is triply enabled, as there is: - a. a global enable in Register 22H - b. a sensitivity enable on a channel by channel basis, in Registers B4H-B6H - c. an amplitude enable on an operator by operator basis in Registers 60H-6EH. If the LFO is desired, enable it by Register 22H. Next, select which channels will be affected by the LFO, to what degree, and whether their amplitude or frequency is affected, by setting Registers B4H-B6H. Finally, if a channel's amplitude is affected, make sure that it is only the "slots" that are affected by setting Registers 60H-6EH. 24H TIMER A MSBs 25H X X X X X X X TIMER A LSBs Genesis Sound Software Manual February 21, 1992 Registers 24H and 25H are ganged together to form 10-bit TIMER A, with Register 25H containing the least significant bits. They should be set in the order 24H, 25H. The timer lasts 18* (1024 - TIMER) microseconds TIMER A = all 1's \rightarrow 18 μ s = 0.108 ms TIMER A = all 0's \rightarrow 18,400 μ s = 18.4 ms 26H TIMER B 8-bit TIMER B lasts 288 * (256 - TIMER B) microseconds TIMER B = all 1's -0.288 ms TIMER B = all 0's $-\sqrt{3}.44$ ms 27H | СНЗ | RES | SET | ENABLE | LOAD | | | |------|-----|-----|--------|------|---|--| | MODE | В | A | BAA | В | A | | Register 27H controls the software timers and the Channel 3 (and 6) mode, two entirely separate items. | CH3
MODE | D7 | D6 | | |-------------|----|----|--| | NORMAL | 0_ | 0 | Channel 3 is the same as the others. | | SPECIAL | 0 | 1 | Channel 3 has four separate frequencies. | | ILLEGAL | 1 | X | * | A normal channel's operators use offsets of integral multiples of a single
frequency. In SPECIAL mode, each operator has an entirely separate frequency. Channel 3 operator 1's frequency is in Registers A2 and A6. Operators 2 and 4 are in Registers A8 and AC, A9 and AD, and AA and AE, respectively. No one at Sega has used the timer feature, but the Japanese manual says: LOAD 1 starts the timer, 0 stops it. ENABLE causes timer overflow to set the read register flag. 0 means the timer keeps cycling without setting the flag. BFSFT writing a 1 clears the read register flag, writing a 0 has no effect. 28H | OPERATOR | X | CHANNEL | |----------|---|---------| |----------|---|---------| This register is used for "key on" and "key off." "Key on" is the depression of the synthesizer key. "Key off" is its release. The sequence of operations is: set parameters, key on, wait, key off. When key off occurs, the FM channel stops its slow decline and starts the rapid decline specified by "RR", the release rate. In a single write to Register 28H, one sets the status of all operators for a single channel. Sega always sets them to the same value, on (1) or off (0). Using a special channel 3, I believe it is possible to have each operator be a separate note, so there is possible justification for turning them on and off separately. | OPERATOR | CHANNEL | |----------|---------| |----------|---------| | D2 | D1 | D0 | | |----|----|----|-----------| | 0 | 0 | 0 | Channel 1 | | 0 | 0 | 1 | 2 | | 0 | 1 | 0 | 3 | | 1 | 0 | 0 | Channel 4 | | 1 | 0 | 1 | 5 | | 1 | 1 | 0 | 6 | 2AH DAC DATA Register 2AH contains 8 bit DAC data. 2BH DAC X X X X X X X If the DAC enable is 1, the DAC data is output as a replacement for channel 6. The only channel 6 register that affects the DAC is the stereo output portion of Register B4H. Registers 30H-90H are all single-operator registers. Please see page 8 for how the twelve channel-operator combinations are arranged. 30H+ X DT1 MUL Both DTI (Defune) and MUL (multiple) relate the operator's frequency to the overall frequency. MUL ranges from 0 to 15_{10} , and multiplies the overall frequency, with the exception that 0 results in multiplication by 1/2. That is, MUL = 0 to 15 gives x 1/2, x 1, x 2, ... x 15. DT1 gives small variations from the overall frequency x MUL. The MSB of DT1 is a primitive sign bit, and the two LSBs are magnitude bits. See the next page for a diagram. Genesis Sound Software Manual February 21, 1992 | D6 | D5 | D4 | MULTIPLICATIVE EFFECT | |----|----|----|-----------------------| | 0 | 0 | 0 | No change | | 0 | 0 | 1 | x (1 + E) | | 0 | 1 | 0 | x (1 + 2E) | | 0 | 1 | 1 | x (1 + 3E) | | 1 | 0 | 0 | No change | | 1 | 0 | 1 | x (1 - E) | | 1 | 1 | 0 | x (1 - 2E) | | 1 | 1 | 1 | x (1 - 3E) | where E is a small number TL (total level) represents the envelope's highest amplitude, with 0 being the largest and 127₁₀ the smallest. A change of one unit is about 0.75 dB. To make a note softer, only change the TL of the slots (the output operators). Changing the other operators will affect the flavor of the note. Register 50H contains RS (rate scaling) and AR (attack rate). AR is the steepness of the initial amplitude rise, shown on page 4. RS affects AR, D1R, D2R and PR in the same way. RS is the degree to which the envelope becomes narrower as the frequency becomes high. The frequency's top five bits (3 octave bits and 2 note bits) are called KC (key code) in the following rate formulas: RS=0 \Rightarrow Final Rate = 2 * Rate + (KC/8) RS=1 \Rightarrow Final Rate = 2 * Rate + (KC/4) RS=2 \Rightarrow Final Rate = 2 * Rate + (KC/2) RS=3 \Rightarrow Final Rate = 2 * Rate + KC** As rate ranges from 0-31, this means that the RS influence ranges from small (at 0-3) to very large (at 0-31). D1R (first decay rate) is the initial step amplitude decay rate (see page 4). It is, like all rates, 0-31 in value and affected by RS. AM is the amplitude modulation enable, whether or not this operator will be subject to amplitude modulation by the LFO. This bit is not relevant unless both the LFO is enabled and Register B4's AMS (amplitude modulation sensitivity) is non-zero. D2R (secondary decay rate) is the long tailoff of the sound that continues as long as the key is depressed. This register is proprietary and should be set to zero. The final registers relate mostly to a single channel. Each register is tripled; please see the diagram on page 9. Genesis Sound Software Manual February 21, 1992 ^{**} Always rounded down. Channel 1's frequency is in A0 and A4H. Channel 2's frequency is in A1 and A5H. Channel 3, if it is in normal mode (please see page 12) is in A2 and A6H. If channel 3 is in special mode: Operator 1's frequency is in A2 and A6H Operator 2's frequency is in A8 and ACH Operator 3's frequency is in A9 and ADH Operator 4's frequency is in AA and AEH. The frequency is a 14-bit number that should be set high byte, low byte (e.g., A4H then A0H). The highest 3 bits, called the "block," give the octave. The next 10 bits give position in the octave, and a possible 12-tone sequence is: | Low | 617 | |------|-------------------| | LUII | | | | 653 | | | 692 | | | 733 | | | 777all in base 10 | | | 823 | | | 872 | | | 924 | | | 979 | | | 1037 | | | 1099 | | High | 1164 | | | | This sequence should be used justice each octave. | | | 2000 | VIII | | |------|----|------|-------------------|-----------| | B0H+ | XX | | FEEDB AC K | ALGORITHM | | | | | | | Feedback is the degree to which operator 1 feeds back into itself. In the voice library, self feedback is represented as this The ALGORITHM is the type of inter-operator connection used. Please see the list of the eight operators on page 3. | B4H+ | L | R | AMX | Х | FMS | |------|---|---|-----|---|-----| | | | | | | i i | Register B4H contains stereo output control and LFO sensitivity control. L — Left output, 1 is on, 0 is off R — Right output, 1 is on 0 is off Note: The stereo may only be heard by headphones. Genesis Sound Software Manual February 21, 1992 AMS (amplitude modulation sensitivity) and FMS (frequency modulation sensitivity) are the degree to which the channel is affected by the LFO. If the LFO is disabled, this register need not be set. Additionally, amplitude modulation is also enabled on an operator-by-operator level. | AMS | 0 | 1 | 2 | 3 | | |-----|---|-----|-----|------|--| | dB | 0 | 1.4 | 5.9 | 11.8 | | | FMS | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | |-----------------|---|-------|-------|------|------|------|------|------| | % of a halftone | 0 | ± 3.4 | ± 6.7 | ± 10 | ± 14 | ± 20 | ± 40 | ± 80 | ## **TEST PROGRAM** Here a tested power-on initialization and sample note in the "Grand Piano" voice (page 27) | Register
22H
27H
28H | 0 | LFO off | |-------------------------------|-----|-----------------------| | 28H | | | | | | Channel 3 mode normal | | | 0 | Off | | 28H | 1 | Off | | 28H | 2 | Off | | 28H | 4 | Off | | 28H | 5 | Off | | 28H | 6 | Off | | 2BH | 0 | DAC off | | 30H | 71H | ` | | 34H | 0DH | DT1/MUL | | 38H | 33H | } | | 3CH | 01H | | | 40H | 23H | | | 44H | 2DH | Total Level | | 48H | 26H | } | | 4CH | 00H | | | 50H | 5FH | | | 54H | 99H | RS/AR | | 58H | 5FH | | | 5CH | 94H | | | 60H | -5 | | | 64H | 5 | AM/DIR | | 68H <i>//</i> / | 5 | | | 6CH | 1 | | | 70H 📎 | 2 | √ | | 74H | 2 | D2R | | 78H | 2 | 1 | | 7CH | 2 | <u> </u> | | Register | Value | Comments | |---------------|-------------|--------------------| | 80H | 11H | | | 84H | 11H | D1L/RF | | 88H | 14 H | | | 8CH | A6H |) | | 90H | 0 | | | 94H | 0 1 | Proprietary | | 98H | 0 | } ***rop.io.u.y | | 9CH | 0 |) | | B0H | 32H | Feedback/Algorithm | | B4H | COH | Both speakers on | | 28H | 00H | Key off | | A4H | 22H | ι Set frequency | | AOH | 69H | Į S | | 28H | F0H | Key on | | <wait></wait> | | | | 28H | 00H | Key off | | | | | # Notes: - 1. Write address then data. - 2. Loop until read register D7 becomes 0. - 3. Follow MSB/LSB sequence. # **Programmable Sound Generator (PSG)** The PSG contains four sound channels, consisting of three tone generators and a noise generator. Each of the four channels has an independent volume control (attenuator). The PSG is controlled through output port \$7F. ## **Tone Generator Frequency** The frequency (pitch) of a tone generator is set by a 10-bit value. This value is counted down until it reaches zero, at which time the tone output toggles and the 10-bit value is reloaded into the counter. Thus, higher 10-bit numbers produce lower frequencies. To load a new frequency value into one of the tone generators, you write a pair of bytes to I/O location \$7F according to the following format: First Byte: | 1 | R2 | R1 | R0 | d3 | d2 | d 1 | ď | |---|----|----|----|------|----|------------|----| | 0 | 0 | d9 | d8 | -t/7 | ď6 | d 5 | d4 | Second Byte: The R2:R1:R0 field selects the tone channel as follows: | <u>B2</u> | <u>R1</u> | R0 | Tone Channel | |-----------|-----------|----|--------------| | 0 | 0 | 0 | #1 | | 0 | 1 | 0 | #2 | | 1 | 0 | 0 | #3 | 10-bit data is: (msb) d9 d8 d7 d6 d5 d4 d3 d2 d1 d0 (lsb) ## **Noise Generator Control** The noise generator uses three control bits to select the "character" of the noise sound. A bit called "FB" (Feedback) produces periodic noises or "white" noise: FB Noise Type Periodic (like low-frequency tone) 1 White (hiss) The frequency of the noise is selected by two bits NF1:NF0 according to the following table: | NF1 | NF0 | Noise Generator Clock Source | |-----|-----|---------------------------------------| | 0 | 0 | Clock/2 (higher pitch, "less coarse") | | 0 | 1 | Clock/4 | | 1 | 0 | Clock/8 (lower pitch, "more coarse") | | 1 | 1 | Tone Generator #3 | Note: "Clock" is fixed in frequency. It is a crystal controlled oscillator signal connected to the PSG. When NF1:NF0 is 11, Tone Generator #3 supplies the noise clock source. This allows the noise to be "swept" in frequency. This effect might be used for a jet engine runup, for example. To load these noise generator control bits, write the following byte to I/O
por SF: | Out (\$7F): | 1 | 1 | 1 | 0 | 0 | FB | NF1 | NFO | |-------------|---|---|---|---|---|----|-----|-----| ### **Attenuators** Four noise attenuators adjust the volume of the three tone generators and the noise channel. Four bits A3:A2:A1:A0 control the attenuation as follows: | <u>A3</u> | A2 | <u>A1</u> | A0 | Attenuation | |-----------|-------------|--------------|-----|--| | 0 | 0 | 0 | 0 | 0 db (maximum volume) | | 0 | 0 | 0 | 1 | 2 db Note: a higher attenuation results in a quieter sound | | 0 | 0 | 1 | 0 | 4 db | | 0 | 0 | 1 | 1 | 6 db | | 0 | 1 | 0 | 0 | 8 db | | 0 | 1 | 0 | 1 👩 | 10 db | | 0 | 1 | 1 | 0 | 12 db | | 0 | 1 | 1 🔏 | 1 | 14 db | | 1 | 0 | 0 | 0 | 1 6 tb | | 1 | 0 | 0 🐧 | 1 | 18 db | | 1 | 0_ | | 0- | 20 db | | 1 | // 0 | 1/ | 1 | _22.0b | | 1 | 1 | / 0] | 0 | 24 db | | 1 | \/ 1 | 0 | 1 | 26 db | | 1 | . 1 | | 0 | 28 db | | 1 | 1 | 1 | 1 | -Off- | | | 223 | | | | The attenuators are set for the four channels by writing the following bytes to I/O location \$7F: Tone Generator #1: Tone Generator #2: Tone Generator #3: Noise Generator: | 1 | 0 | 0 | 1 | АЗ | A2 | A 1 | A0 | |---|---|---|---|----|----|------------|----| | 1 | 0 | 1 | 1 | АЗ | A2 | A 1 | A0 | | 1 | 1 | 0 | 1 | А3 | A2 | A1 | A0 | | 1 | 1 | 1 | 1 | А3 | A2 | A1 | A0 | ### **EXAMPLE** When the Mk3 is powered on, the following code is executed: LD HL,CLRTB ; clear table LD C,PSG_PRT ; psg port is \$7F LD B,4 OTIR ; load four bytes (etc.) CLRTB defb \$9F, \$BF, \$DF, \$FF This code turns the four sound channels off. It's a good idea to also execute this code when the PAUSE button is pressed, so that the sound does not stay on continuously for the pause interval. GENESIS SOFTWARE DEVELOPMENT MANUAL SEGA ENTERPRISES. LTD. VER2.0 CONFIDENTIAL #229 PROPERTY OF SEGA # CONTENTS | 1. | | REQ | DUIRED ITEMS TO SET UP THE GENESIS | 1 | | |-------------------|-----|------|--|--|----------| | | § 1 | C | CARTRIDGE | 1 | | | | § 2 | 2 1 | NITIAL PROGRAM | 2 | | | | § 3 | l II | NDICATION OF EXTERNAL RAM INFORMATION | 3 | | | | § 4 | l II | NDICATION OF ID MODEM INFORMATION | ? | | | | § 5 | 5 | CHECK SUM | ······································ | | | 2. | | VDP | SETUP DATA | 6 | . | | 3. | | SET | TINGS TO PRESERVE COMPATIBILITY DURING GENESIS DE | EVELOPMENT 7 | Ą | | 4. | | | 00 COMMANDS AND PERIPHERAL DEVICES | 8 | | | | § 1 | | VDP AND 68000 COMMANDS | (F.) | | | | § 2 | 2 | JOYSTICK AND PERIPHERAL DEVICES ID codes ♦ | g | | | | | ò | Periphral devices ♦ JOY PAD ♦ | 9 10 | | | 5. | | PREC | CAUTIONS FOR SOFTWARE DEVELOPMENT | 12 | | | | § 1 | | Z80 CANNOT PROPERLY ACCESS THE BUS ON THE 68000 | 14 | | | | § 2 | | H_INT AND V_INT ARE USED IN GENESIS PROGRAMS | ••• 14 | | | | § 3 | | TROUBLES DUE TO INTERRUPTS DURING COMMUNICATION | 15 | | | | § 4 | | PRECAUTIONS WHEN THE CONTROL A AND B SCREENS ARE | ••• | | | * - y ∞ •• | § 5 | | OTHER PRECAUTIONS | : USED 17 | | | | , | | recautions for the main program and Z80 bus requerecautions for sound access | ests 17 | | | | | | hen the reset button is pressed repeatedly otes on the control pad and read-programs | • 18 | | | 6. | | | ES ON MEGA DRIVE EUROPE VERSION | •• 19 | | | • | § 1 | | PAL | 20 | | | | _ | DAI | ferences in development of MEGA DRIVE software ar | 20 | | | | | | VERTICAL 30-CELL HODE | | | | 7. | - 4 | | S ON THE BACKUP RAMS | 21 | | | | | | | ••• 22 | | REQUIRED ITEMS TO SET UP THE GENESIS ន CARTRIDGE The following data (hereafter ID) must always be entered from the address 100H. | 100H
110H
120H
150H
180H
18EH
190H
1A0H
1A8H
1B0H
1BCH
1C8H | 'SEGA MEGA DRIVE' '(C)SEGA 1991.MAR' 'GAME NAME FOR DOMESTIC USE' 'GAME NAME FOR OVERSEAS USE' 'GM XXXXXXXX-XX' \$XXXX CONTROL DATA \$000000.\$XXXXXX \$FF0000.\$FFFFFF EXTERNAL RAM INFORMATION HODEM INFORMATION INHIBITED TO BE USED COUNTRY NAME | : 1
: 2
: 3
: 4
: 5
: 6
: 7
: 18
: 19
: 11
: 12
: 13 | |--|--|---| |--|--|---| - Descriptions on the above items - 1. Hardware name : 'SEGA MEGA DRIVE' or 'SEGA GENESIS - 2. A company name of four characters long or company code is entered after (C). (C) SEGA when made or ordered by SEGA. (C) T-XX(company code) when made by a third party. - 3. A domestic game name is entered (shifted JIS kanji character codes can be used; however, the name should be entered with as many ASPII characters as possible). - 4. A overseas game name is entered (shifted JIS kanji character codes can be used; however, the name should be entered with as many ASCII characters as possible). - 5. Type of the cartridge, product number and version number. Cartridge type : GM for game AI for education Product number : Unique number for each game Version This number should be increased when the product is upgraded. - 6. Check sum (see 'check sum') - 7. Information on supports for I/O MARK III Jox Stick GENESIS Joy Stick Keyboard : K Serial (RS232C) Printer Tablet ___ Track ball Paddle controller FDD/ : F CORON : C Analog Joy Stick 8. ROM capacity: Start address. End address **Example - 9. RAM capacity (fixed) from \$FF0000 to \$FFFFFF. - 10. External RAM information (see below) - 11. Modem information (see below) - 12. Inhibited to be used (filled with spaces) - 13. Country name Japan : J USA : U Europe : E O The data must be entered carefully, since the ID data will be used when the product is checked. O The ID data and the initial program must always be input during the check sample process (see '2 Initial program') # § 2 INITIAL PROGRAM The initial program (see ICD_BLK4.PRG, in the sample program disc) must always be stored in every product, in order to set every product to the same status when the GENESIS is powered on, and to execute the hardware security process and other required processes which must be performed at the resetting. This program must always be input as it is, starting with program start. Remember that any product cannot be released, if its initial program is modified, or if it is not input starting with program start. ``` 83 INDICATION OF EXTERNAL RAM INFORMATION 180H : dc.b 'RA', %1x1yz000, %abcdefgh 1B4H : dc.1 Start address. End address : Data preservation X 1 ... Non-volatile ... Backup, EEPROM, etc. where data will not be destroyed even if the power is turned off. 0 ... Volatile Data will be lost when the power is turned off ΥZ : Data size 10 Even byte (D15 to D8) 11 Odd byte (D7 to D0) 00 Word 01 Others (EEPROMs which are serially accessed, RAMS with a bit data bus. etc.) abc : Device type 989 001 ... SRAH 010 ... EEPROM 911 100 101 110 111 defgh : Spare which is filled with 0s. Start addrss, End address Addresses where RAMs are installed or areas of the control ports. ● Indication examples● O 8k byte backup RAM cartridge SRAM backup memory Odd bytes only 8k byte capacity Addresses $200001 $203FFF 'RA' 211111000, 200100000 dc.b dc.1 $200001.$203FFF O EEPROM cartridge (for modem) Since the FEPROM for modem is accessed serially, the data size fits into 'others.' Its data preservation fits into '1' since data in EEPROMs will not be destroyed when the power is turned off. The address is set to $200001 for the control ports. EEPROM memory Serial access 1 bit capacity (128 \times 8) Addresses $200001,$200001 dc.b 'RA'.%11101000.%01000000 dc.1 $200001,$200001 ``` 8 4 # INDICATION OF ID MODEM INFORMATION 18CH: 'MO'.'company name'.'xx.y'.'zz' : Same as the company name or code which is entered from 110H. : Game number (if this number is the same, communication can be performed) 00 TELTEL stadium 91 TELTEL majong 82 MEGA answer SEGA NET GAME 83 : Version No. ZZ : Modem information Japan only : No microphone installed 80 10 Japan only : Microphone installed Overseas only : No microphone installed 20 Overseas only : Microphone installed 30 40 Common to Japan and overseas : No microphone installed Common to Japan and overseas : Microphone installed 50 No microphone installed for Japan 60 microphone installed for overseas Hicrophone installed for Japan: 70 no microphone installed for oversess 88 90 # ● Indication examples● ① If SEGA released a base ball game 'abcde' with a microphone, then the modem information is like this. 1BCH 'HO'. SEGA', '80 8', '10' ② After that, TOTO (third party with a company code of T-01) released the software 'xyz' with a microphone for Japan use only, which can communicate with '① abcde'. Then the modem information is like this: 1BCH xx is common, but the version number in y is changed. Since xx is comen, the information indicates that ① and ② can communicate each other. Note that the game number and the version number are managed by SEGA of JAPAN. # S 5 CHECK SUM The program to examine the check sum is given below. The program starts at 0FF8000H in First fill the space to be used for this game with -1 (0FFH), and then load all the programs. After this, load this program (including the check sum program), and start it at
0FF8000H. Wait a while and stop the program. The check sum value is stored in the lower word of data register 0 (d0). It is a good idea to release the break points in the memory. The space to be used for the game must also be filled with -1 (OFFH) before the programs are stored in the ROM. 2. VOP SETUP DATA The followings must always be fixed. (40-cell mode and NTSC mode) | | RØ | 0 | 0 | 0 | | 0 | 1 | 0 | 0 |] | | | | |---|-----|---|---|----|----|-----|---|------------|---|----|---|---------------|---| | | 1 | 0 | | | | 0 | 1 | 0 | 0 | 1 | | | | | | 2 | 0 | 0 | | | | 0 | 0 | 0 | 1 | | | | | | 3 | 0 | 0 | | | | | | 0 | | | | | | | 4 | 0 | 0 | 0 | 0 | 0 | | | | | | | | | | 5 | 0 | | | | | | | | | | <i>></i> \ | | | | 6 | 0 | 0 | 0 | 0 | 0 | 0 | ~ 0 | 0 | | | | | | | 7 | 0 | 0 | | | | | | | | | | 7 | | | 8 | 0 | 0 | 0 | 0 | 0 | 0 | -0 | 0 | | | > | | | | 9 | 0 | 0 | 0 | 0 | 0 | 6 | 0 | 0 | | | | | | | 1 0 | | | · | | • | | | | ₩. | | | | | , | 1 1 | 0 | 0 | 0 | 0 | . 0 | | | | | | | | | | 1 2 | 1 | 0 | 0 | 0 | | | | 1 | | | | | | | 13 | 0 | 0 | | | | | | | | • | | | | | 1 4 | 0 | 0 | 0 | /0 | 0 | 0 | 0 | 8 | | | | | | • | 1 5 | | | | | | | | | | | | | | • | 16 | 0 | 0 | | | 0 | 0 | | | | | | | | • | 17 | | 0 | 0 | | | | | | | | | | | • | 18 | | 0 | 0 | | | | | | | | | | | | 19 | | | 40 | | · | | | | _ | | | | | | 20 | | | | | | - | | | | | | | | | 21- | | | | | | | | | | * | | | | 2 | 2 2 | | | | | | | | | | | | | | 2 | 2 3 | \triangle The DMA registers should be set in such a way that only the actual memory is accessed. Don't attempt to use the techniques taking advantage of image, etc. # З. # SETTINGS TO PRESERVE COMPATIBILITY DURING GENESIS DEVELOPMENT - I1 mode on the 68000 side (also applies to ER-ICE, 178 and 378) - ① Cartridge in use MA 0000000,0FFFFFF=NO (No Memory is assigned for all areas) MA 0000000.007FFFF=US (Only required portion of the DRAM area is assigned) MA 0A00000.0A01FFF=US (Z80 S-RAM area) MA 0A04000.0A04FFF=US (FM sound source area) MA 0A10000.0A11FFF=US (I/O and Z80 control) MA 0C00000.0C00FFF=US (VDP and sound control) MA OFF0000.0FFFFFF=US (work RAM area) When the write protect function is used on the DRAM board, the following steps need to be conducted. STEP 1. HA 0A13000.0A13FFF=US 2. E 0A130F0=XXXX (Setting up or releasing) 3. MA 0A13000,0A13FFF=NO It is easier to defined a macro by conducting the above steps - I2 mode on the Z80 side (also applies to 178, 278 and 378) MA 00000.0FFFF=NO (No memory is assigned for all area) MA 00000,01FFF=US (Z80 SRAM area) MA 04000,043FF=US (Ym2612 area) MA 06000,063FF=US (bank registe@area) MA 07C00,07FFF=US (PSG on the VIP side) MA 08000,0FFFF=US (68000 memory area) 4. 68000 COMMANDS AND PERIPHERAL DEVICES S 7 VDP AND 68000 COMMANDS The IAS command is not supported on the GENESIS. The IAS command serves to test and set up the byte operands which are assigned by the effective address fields. If this command is issued, the test is executed and completed, but the setting will be ignored and not be written. When VRAM access is made, reading in the write mode or writing in the read mode cannot be executed. - If and attempt is made to read in the write mode when VRAM access is performed, the VDP suspends the 68000 (the VDP will not return DTACK to the 68000). - If an attempt is made to write in the read mode when VRAM access is performed, the address for the VRAM access is only increased, but no data is written in the VRAM. For these reasons, the following commands cannot be used to access the VRAM. Example: CLR command The CLR command attempts to write 0 after reading the target memory. The VDP suspends the 68000, since the read access occurs when the write access is made to the VRAM. ** otheres ** CLR, NBCD, NEG, NEGX, NOT, Scc, TAS, (single operand commands), BCHG, BSET, BCLR,)bit handling commands) ASR, ASL, LSR, LSL, ROR, ROL, ROXR, ROXL (shift and rotate commands), ADDI, ADDQ, ANDI, CMPI, EORI, ORI, SUBI, SUBQ (immediate commands) (The above commands cannot be used to access the VRAH, since read and write operations are made to a single destination in these commands). #### § 2 JOYSTICK AND PERIPHERAL DEVICES In addition to the joy stick, various peripheral devices can be connected to the I/Oport. Since such devices have their own ID codes, the CPU can judge which devices are connected to the I/O port by examining their ID codes. However, remember that some peripheral devices of the MARK III & MS cannot be known by this method. # ◇ ID codes ◇ The ID code is expressed by the OR sum logic of DATA 1, 2 and 3, PD3, PD2, PD1 and PD0 which correspond to the external pins, CTRL1, CTRL2 and EXT in the I/O port. The OR sum value is expressed in the following way by data when 1 is output and by data when his output, provided that the TH pin is set in the output mode. ID3 = (PD6 = 1) AND (PD3 OR PD2) ID2 = (PD6 = 1) AND (PD1 OR PD6) ID1 = (PD6 = 0) AND (PD3 OR PD2) ID0 = (PD6 = 0) AND (PD1 OR PD0) The relationships between the ID code and the peripheral device are given below | | | | • | | | ∞ _2 i #@ i | Deium. | |--|-------------------------|--|-------------------------------|-------------------------------|---|--|--| | Device nam Old joy stick Not defined New joy stick SEGA RESERVED Not defined SEGA RESERVED | e
(2TRIG)
(3TRIG) | | I D 3 1 1 1 1 1 1 0 0 0 0 0 0 | I D 2 1 1 1 1 0 0 0 0 0 0 0 0 | 1 D 1 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 | 0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | FEDCBA9876543210
\$ | | | | | | | | | | - ◇ Periphral devices ◇ - ID = \$F : Old joy stick The standard joy stick of MARK III & MS contains the 4-direction switch and A and B triggers. Each switch is configured as shown below, which is set to 0 when it is pressed. | | T | | | |------|----------|----------|----------| | | CTRL1 | CTRL2 | EXT. | | CTRL | \$A10009 | \$A1000B | \$A1000D | | DATA | \$A10003 | \$A10005 | \$A10007 | | - | | · | | | | PD7 | PD6 | PD5 | PD4 | PD3 | PD2 | PD1 | PD ø | |------|-----|-----|-----|-----|-----|-----|-----|-------------| | CTRL | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | DATA | * | * | ТВ | TA | R | L | Ď | | # ID = \$D : New joy stick The joy stick of the GENESIS contains the 4-direction switch, A, B and C triggers and The mode can be changed by setting 0 or 1 after the TH pin is set in the output mode. Each switch is configured as shown below, which is set to 0 when it is pressed. | | | СТІ | | CTRL2 | | | EXT. | | | |---------|----------|--------|----------|-------|----------|-------|--|------|---------| | | CTRL | \$A1 | 0009 | \$. | A 1 0 | 0 0 B | \$A | 1000 | D D | | | DATA | \$ A 1 | 0003 | \$. | A 1 0 | 005 | | 1000 | | | | | PD7 | PD6 | PD5 | PD4 | PD3 | PD2 | PD1 | PD@ | | | CTRL | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | | T H = 1 | DATA | * | 1 | TC | ТВ | | | | | | | | | <u> </u> | | 1.8 | R | | D > | U | | TH = 0 | DATA | * | 0 | ST | TA | 0 | 0 | D | Ū | | | ·
 | | (TH) | | | | | | <u></u> | | | | | | | | | | | | | | | U | | | Γ | ST | ѝ | | | | | | L · | R | A | <u> </u> | | لة | | | | | | D | | T | | ТВ | G | гс | | | | 1 | | | | ا ل | | <u> </u> | الت | | | | <u> </u> | | | | | | | | | It takes about 1 μ sec from the time the TH is changed until the data is fixed (corresponding to the elapse time of two NOP commands). Example: The time difference from the time when the TH is changed until the switch value appears at PDA of DATA. PROPERTY OF SEGA ## JOY PAD Player's button operations are recognized by reading data in \$A10003 and \$A10005 of the I/O addresses via CONTROL1 and CONTROL2. 7 bits of D6 to D0 in the I/O are sent to CONTROL1 and CONTROL2, but there are eight buttons. So, the D6 bit is used as the select bit, and the button operation is read in two steps. ## SAMPLE PROGRAM ** MOVE.B #\$40,\$A10009 HOVE.B #\$40,\$A10003 NOP NOP MOVE.B \$A10003,D0 HOVE.B #\$00,\$A10003 NOP NOP MOVE.B \$A10003,D1 ; Enter D5 to D0 of CONTROL1. ; D6 is set to output (select bit). ; 1 is output to D6 (C, B, right, left, down or up is selected). ; D5 to D0 values are read into register D0. ; 0 is output to D6 (start, A, down or up) is selected). ; D5 to D0 values are read into register D1. Each button outputs 0 when it is pressed. Register values after the program is executed. | | D | D | D | ם | D | | | | |----------------|---|---|-------|------|-------|------|--------------|-----| | DATA REG | | | | | | ט | טן | | | | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | REGISTER
Dø | 0 | 1 | CB#S | ២១ដទ | RIGHT | TWIL | 2 ≪00 | Ų | | REGISTER
D1 | 0 | | SHAR- | Abt | 0 | 0 | 2≮00 | DQ. | HC 157 logic | Inp | ut | Output | | | | | |-----|----|--------|--|--|--|--| | S | G | Υ× | | | | | | X | 1 | -Z- | | | | | | 0 | 0 | Ax | | | | | | 1 | 0 | Вх | | | | | #### Z80 CANNOT PROPERLY ACCESS THE BUS ON THE 68000. ន When the I80 tries to enter the bus cycles of the 68000 to read/write a specific address on the 68000, and when the access to \$A100xx is made in the 68000's bus cycle immediately before the bus cycle which the Z80 tries to enter, the cylce of the Z80's entry may become too short to read/write data properly. Heasure...When the 68000 accesses \$A100xx (1) Send BUSREQ to the Z80 (suspend
the Z80's bus access...\$411100 = 0100H) @Access \$A100xx. (3) Release the BUSREQ of the Z80 (the Z80 starts the bus access....\$A11100 = 0000H). Modify the program to execute the above steps Note: it will be no problem if the program is designed to be synchronized with V_INT, etc. to eliminate a bad timing for the bus access. ### H_INT AND V_INT ARE USED IN GENESIS PROGRAMS § 2 When IE1 = 1 and #10 = 00H are set for VDP register #0, H_INT and V_INT occur at the timings below. Care is required for the timing of H_INT at No.224, in which case, the next V_INT occurs in only 14.7 μ sec. If the receipt of H_INT at No.224 is prolonged and the opportunity of the V_INT occurrence is missed, that V_INT is canceled. Once the V_INT is caceled, H_INT occurs at No.225 instead of V_INT. 1) Before H_INT at No.223 is completed, set IE0 = 0 for register \$1 to Heasure A suppress the next occurrence at No. 224. @Before the receipt of V_INT is completed, set IE8 = 1 for register #1 to make H_INT effective (No.224 also becomes effective) ③Receive H_INT at No.224. Measure B (1) Before H_INT at No.223 is completed, set SR = 25xx for the 68000 not to receive No. 224. ②Before the receipt of VINT is completed, return SR of the 68000 to the previous value (so that No.224 can be received). 3 Receive H_INT at No.224 *Don't give damages to the flag when you are handling SR. ● The case which was known to cause troubles due to multiplication) ①After the multiplication, the 68000 decides to receive H_INT by means of HOVE. ②The 68000 generates VPA (INT-ACK). (No.224 is received.) The VNP cannot find the VPA after the H_INT occurrence, and so the H_INT is treated as 'un-processed.' The VPA is received after the occurrence of V_INT. This receipt is assumed that V_INT has been received and the H_INT is preserved. Since H_INT at No.224 was received in 1, the processing is executed. The 68000 decides to receive H_INT again after the H_INT is proccessed at the occurrence of RTE. The 68000 generates VPA (INT-ACK). The VDP assumes that the VPA is the preserved H_INT, and proccesses it (at No.225). (6H_INT (at No.225) is received in (4), and the process is executed again. CONFIDENTIAL ### TROUBLES DUE TO INTERRUPTS DURING COMMUNICATION **83** The similar troubles to 'H_INT and V_INT are used' (see section 2) occur in: a) 'H_INT and INT during data communication', and b) 'V_INT and INT during data communication'. Since 'INT during data communication' occurs asynchronously with V_INT and H_INT the measures differ from those described in section 2. Measure for a). INT and the receive flag are simultaneously set when data communication starts The receive flag is cleared when received data is read by means of 'INT during wata receipt' which does not overlap with H_INT. If it overlaps ,with H_INT and this H_INT is treated as the second 'INT during data receipt', the receive flag remains elegred. Hence, the proper measure should be selected by using the status of the receive flag to judge whether it is treated as 'INT during data receipt' or 'data receive INT'. Measure for b) Set the mode in which V_INT does not occur and execute the same treatment as that of V_INT by detecting the V timing using the V_BLK bit for VDP status O0thersO The timing for H_INT or V_INT can be judged by using H_BLK, V_BLK, HV_counter, etc. The receive flag can be used to judge whether 'INT during data receipt' or 'INT during data receipt as which H or V is treated' occurs. Other items and measures should be judged by combing IEO, IE1 and IE2 in the VDP registers, etc. # S 4 PRECAUTIONS WHEN THE CONTROL A AND B SCREENS ARE USED When vertical 2-cell-unit scroll and horizontal scroll are used together, remember that up to 15 dots at the left of the screen cannot be vertically scrolled if a number which is not a multiple of 16 (i.e., 1 to 15, 17 to 31, etc.) is assigned for the horizontal scroll quantity. ←→ Horizontal scroll quantity : 16n+m When the horizontal scroll quantity=ton+m (1≤m≤15) is set, the vertical scroll quantity becomes unknown in the left m-columns. **% Reason** 1 When the horizontal scroll quantity= 16n+m(1≤m≤15) is set on the A or B screen, 21 words need to be secured in the RAM for the vertical scroll setting. But the actual capacity of the RAM is only 20 words. # S 5 OTHER PRECAUTIONS • Precautions for the main program and Z80 bus requests Care is required for the following items in the main routine on the 68000 when the Z80 area is aacessed. Main routine OA bus request is sent to the Z80. The interrupt is achieved. (A bus request is released within INT. (for example, for reading the control pad, etc.). ⑤The bus request is released within INT. ⑥Operation returns to the main routine. The data is written in the 280 area. However, the Z80 is usually locked with a bus request, but it has been released in (5). Hence, the following troubles may occur. · RAMs of the Z80 may be broken. · Wrong data may be read when a Z80 bank is accessed. % Measure CONFIDENTIAL The interrupt is set to be disabled before step (1) is executed. # Precautions for sound access ①Sound stops during game play. **☆Cause** and measure When the busy flag of status data of the FM sound source (YM2612) is read, (CS,RD,WR,A1,A0)=(0,0,1,0,1) has been set (the address 4001H of the MEGA drive is accessed). However, no provisions are given to the output of the YM2612 under the above conditions. It happens that 'not busy' is set and adta is successfully read, Measure When the busy flag of the FM sound is read, any address other than 4000H address in the MEGA drive must not be accessed. # When the reset button is pressed repeatedly (1) Software runs away when the reset button is pressed repeatedly. # **☆**Cause and measure · Pressing the reset button resets the CPU, but not the VDP. · When the reset button is pressed while DMA is performed, the VDP continues the · If the VDP is performing DMA when the VDP is accessed immediately after resetting, this access is ignored. ## **%**Measure**%** CONFIDENTIAL Before accessing the VDP after the initial program (ICD_BLK4), check 'DMA busy' in the status register. If DMA is underway, no access is made. @The software still runs away in some cases even if the above measure is taken. **☆**Cause and measure Such troubles can occur, if resetting is made from the time when the parametter set for executing DMA by the CPU is terminated until the first DMA starts. PROPERTY OF SEGA Notes on the control pad and read-programs The control pad is designed and manufactured in such a way that the up and down signals or the left and right signals are entered simultaneously. However, they can rarely be entered simultaneously, when the internal rubber is aged too much or strong forces exceeding the designed tolerance level are applied. So, design the software not to accept such simultaneous signals. Make a revision of the Manual Regarding the access to VRAM, SRAM, VSRAM, please disregard the statement in the manual that you can implement byte access. You can only implement word access and long-word Make the change in the manual 6. NOTES ON HEGA DRIVE EUROPE VERSION 8 1 PAL - ◆PAL ○The vertical size is increased by two cells. ○Intervals between interrupts are increased (16msec to 20msec). - OThe vertical 30-cell mode can be used. OSince the color change appears at the bottom of the cores. OSince the color change appears at the bottom of the screen, wait about smsec after entering the V-interrupt, and then change the color. OSince every operation goes slow when synchronized in interrupts, adjust movements and rates so that motions on the screen appear naturally. Owhen sounds are produced in synchronization with interrupts, the tempo needs to be increased. The PAL data table is required. OWhen sounds are produced by the FM timer, no modifications for MISC or PAL are required. 1. When the vertical 28-cell mode is changed to the vertical 30-cell mode on PAL, the 30-cell mode displays all the cells which have been displayed in the 28-cell mode and the two cells at the bottom which have not been displayed in the 28-cell modes. 2. The 28-cell mode does not display one cell each at the top and the bottom; the 30-cell mode displays the entire screen. 3. The V-blank period is about 5.6 msec in the 28-cell mode; it is about 4.6 msec (shorter) in the 30-cell mode 'approximately same as that on NTSC). 4. By developing software in awareness given to the PAL 30-cell mode, the software, which is common to NTSC and PAL and has minimized border part even in the PAL mode, can easily be developed. \odot Scroll size 64 \times 64 (V-scroll quantity = 0 in the horizontal 40-cell mode) When vertical scrolling is performed continuously (e.g., games played with vertical scrolling), it is delieved that there will be no problem even if the 28-cell mode is changed to the 30-cell mode. 100 # 7. NOTES ON THE BACKUP RAYS There are two types of backp RAMs: O Odd addresses in 200000H~203FFFH··64k bits O Odd addresses in 200000H~20FFFFH··256k bits The same access methods as those for the work RAMs are used. However, care is required for the following points. - O Data (initial values) in the backup RAMs is not known when the cartridge (product) is shipped. The initialization must always be executed when the power is turned on. (In many cases, they are cleared to \$FF when shipped from the factory, but this cannot apply for all cases.) - O Data in the backup RAMs may rarely be destroyed. For this reason, the data must always be check and reproduced. Any important data must not be stored in the first word (in the first address) and last word (in the last address), since there is a high possibility that data in these word may destroyed.