
Europäisches Patentamt

European Patent Office

Office européen des brevets

E
P

 0
 9

81
 1

07
 A

1

Printed by Xerox (UK) Business Services
2.16.7/3.6

(19)

(11) EP 0 981 107 A1

(12) EUROPEAN PATENT APPLICATION
published in accordance with Art. 158(3) EPC

(43) Date of publication:
23.02.2000 Bulletin 2000/08

(21) Application number: 98919513.6

(22) Date of filing: 07.05.1998

(51) Int. Cl.7: G06T 15/00

(86) International application number:
PCT/JP98/02032

(87) International publication number:
WO 98/50887 (12.11.1998 Gazette 1998/45)

(84) Designated Contracting States:
GB

(30) Priority: 07.05.1997 JP 11677297

(71) Applicant:
SEGA ENTERPRISES, LTD.
Tokyo 144-0043 (JP)

(72) Inventor: MORIOKA, Seisuke
Ohta-ku, Tokyo 144-0043 (JP)

(74) Representative:
Brown, Kenneth Richard et al
R.G.C. Jenkins & Co.
26 Caxton Street
London SW1H 0RJ (GB)

(54) IMAGE PROCESSOR AND IMAGE PROCESSING METHOD

(57) The present invention comprises a buffer mem-
ory 103 for storing compressed texture data and a high-
speed texture buffer 104 for storing a part of texture
data after executing decompression, so that when nec-
essary texture data does not exist in the texture buffer

104, the texture data in the texture buffer 104 is updated
by reading the texture data from the buffer memory 103,
decompressing and writing the texture data to the tex-
ture buffer 104.

EP 0 981 107 A1

2

Description

TECHNICAL FIELD

[0001] The present invention relates to an image
processing unit and image processing method for com-
puter graphics.

BACKGROUND ART

[0002] Providing real and gorgeous images in a com-
puter graphic (CG) system using texture mapping is
demanded. The easiest means for generating such real
and gorgeous images is using a large volume of texture
data.
[0003] However, in a system which executes high
quality texture mapping such as tri-linear mapping, very
high-speed access is demanded for the texture buffer,
and to use a large volume of data, a large capacity high-
speed storage device must be provided. This requires
enormously high cost, which makes it difficult to provide
a large capacity storage device.
[0004] With the foregoing in view, it is an object of the
present invention to provide an image processing unit
and image processing method which can generate
superb images using a relatively small capacity texture
buffer.

DISCLOSURE OF THE INVENTION

[0005] An image processing unit according to the
present invention comprises a first storage device for
storing texture data, a second storage device for storing
a part of the above texture data, and a processing sec-
tion for executing image processing based on the tex-
ture data in the above second storage device, where the
above processing section updates the texture data by
reading the texture data from the first storage device
and writing that data to the second storage device in a
predetermined case.
[0006] Here the predetermined case is a case when
updating the texture data is necessary, such as the case
when texture data not stored in the second storage
device must be used. The texture data may be updated
in advance when processing capability is sufficient. The
storage devices are not only semiconductor memories
but include such external devices as HDD and CD-
ROM.
[0007] The image processing unit according to the
present invention is characterized in that the above
mentioned first storage device stores data including
compressed texture data, and the above mentioned
processing section further comprises a data decom-
pression circuit for decompressing the read texture data
so as to write the decompressed data to the second
storage device.
[0008] Here the texture data to be stored in the first
storage device can be non-compressed data, data con-

taining both compressed and non-compressed data, or
compressed data. The image processing unit according
to the present invention is characterized in that the
above mentioned processing section further comprises
a first-in-first-out storage device for receiving the read
texture data, temporarily storing this data, and output-
ting the data to the above mentioned data decompres-
sion circuit.

[0009] The image processing unit according to the
present invention is characterized in that the above
mentioned processing section further comprises a pal-
ette transformation circuit for executing palette transfor-
mation when the texture data is updated.
[0010] The image processing unit according to the
present invention is characterized in that the above
mentioned processing section further comprises a mip
map generation circuit for generating a mip map when
the texture data is updated.
[0011] An image processing method according to the
present invention uses a first storage device for storing
texture data and a second storage device for storing a
part of the texture data, so as to execute image process-
ing based on the texture data in the second storage
device, and comprises an updating step for updating the
texture data by reading the texture data from the first
storage device and writing that data to the second stor-
age device in a predetermined case.
[0012] The image processing method according to the
present invention further comprises a data decompres-
sion step for decompressing the read texture data when
the data stored in the first storage device is compressed
texture data, characterized in that the decompressed
data is written to the second storage device.
[0013] The image processing method according to the
present invention further comprises a palette transfor-
mation step for executing palette transformation when
the texture data is updated.
[0014] The image processing method according to the
present invention further comprises a mip map genera-
tion step for generating a mip map when the texture
data is updated.

BRIEF DESCRIPTION OF THE DRAWINGS

[0015]

Fig. 1 is a functional block diagram of an image
processing unit in accordance with the embodiment
1 of the present invention;

Fig. 2 is a functional block diagram of a geometry
processor of the image processing unit in accord-
ance with the embodiment 1 of the present inven-
tion;

Fig. 3 is a functional block diagram of a geometry
processor of the image processing unit in accord-
ance with the embodiment 1 of the present inven-

1 2

5

10

15

20

25

30

35

40

45

50

55

EP 0 981 107 A1

3

tion;

Fig. 4 is a functional block diagram of a texture
processor of the image processing unit in accord-
ance with the embodiment 1 of the present inven-
tion;

Fig. 5 is a functional block diagram of a shading
processor of the image processing unit in accord-
ance with the embodiment 1 of the present inven-
tion;

Fig. 6 is a functional block diagram of the image
processing unit in accordance with the embodiment
1 of the present invention;

Fig. 7 is an internal block diagram of the image
processing unit in accordance with the embodiment
1 of the present invention; and

Fig. 8 is an explanatory diagram on the data read,
decompressing and write timing in the image
processing unit in accordance with the embodiment
1 of the present invention.

BEST MODE FOR CARRYING OUT THE INVENTION

Embodiment 1

[0016] Equipment and method of an embodiment 1 of
the present invention will now be explained. The
embodiment 1 of the present invention has a mecha-
nism to update texture in real-time at high-speed.
[0017] Fig. 1 is a block diagram of an image process-
ing unit in accordance with the embodiment 1 of the
present invention. In Fig. 1, 1 is a CPU (Central
Processing Unit) which manipulates objects in a virtual
space, receives information thereof, and executes vari-
ous controls. 2 is a geometry processor, which executes
the coordinate transformation of polygons, such geo-
metric transformation (vector arithmetic operations) as
clipping and perspective transformation, and luminance
calculation in three dimensional computer graphics at
high-speed. 2a is a polygon material light buffer RAM,
which is a buffer for storing effective polygon data,
material data and light data for one frame when the
geometry processor 2 executes processing. A polygon
is a polygon constituting a three-dimensional body in a
virtual space. A breakdown of data to be stored in the
buffer memory 2a follows.
[0018] Link information, coordinate information and
other attribute information of polygons.
[0019] LINK X, LINK Y, X, Y, iz, Tx, Ty, Nx, Ny, Sign Nz,
Alpha, Light ID, Material ID etc.

Material information

[0020] Depth enable, Depth function, Depth density,

Texture enable, Fog enable, translucency enable, tex-
ture type, texture function, offset x, y, size x, y, repeat x,
y, mirror x, y, color id, Sine, Material specular, Material
emission, Polygon color, Texture mode, blend mode,
etc.

Light information

[0021] Light Position, Light Direction, Light Type,
Attenuation, Cutoff, Spotexp. Light Color, Light Ambient,
etc.
[0022] 3 is a fill processor for executing hidden surface
removal processing. The fill processor 3 fills a polygon
in an area, and determines each information on the pol-
ygon which is closest to the viewer for each pixel.
[0023] 4 is a texture processor. The texture processor
4 pastes texture on each pixel in an area Texture map-
ping is a processing for creating an image by pasting
(mapping) patterns (texture), which are defined sepa-
rately from the shape, on the surface of an object for
which shape has been defined. 4a is a texture RAM,
where a texture map for the texture processor 4 to exe-
cute processing is stored.
[0024] 5 is a shading processor. Shading is a method
to express the shadow of an object comprised of poly-
gons while considering the normal line vector of a poly-
gon, position and color of a light source, position of view
point, direction of line of sight, and other factors. The
shading processor 5 determines the luminance of each
pixel in an area. 5a is a frame buffer for storing image
data on one screen. Data is sequentially read from the
frame buffer 5a, and after the digital data is converted to
analog signals, the analog signals are supplied to such
displays as a CRT, liquid crystal display and plasma dis-
play, which are not depicted here.
[0025] 6 is a program work polygon buffer RAM for
storing the programs of the CPU1 and commands to the
graphic processor (e.g. database of polygons, display
lists). This buffer memory 6 is a work memory of the
CPU1 as well.
[0026] The fill processor 3, texture processor 4 and
shading processor 5 execute rendering for creating pic-
tures using models defined in the virtual space coordi-
nates. In rendering, each area is processed sequentially
from the upper left of the screen. Rendering processing
is repeated for the number of areas.
[0027] Now details on the image processing unit in
accordance with the embodiment 1 of the present
invention will be described with reference to the function
block diagrams in Fig. 2 to Fig. 5.
[0028] Fig. 2 is a functional block diagram of the
geometry processor 2. In Fig. 1, 21 is a data dispatcher,
which reads a command from the buffer RAM 6, ana-
lyzes the command, controls a vector engine 22 and
clipping engine 24 based on the analysis result, and
outputs the processed data to a sort engine 27.
[0029] 22 is the vector engine for executing vector
arithmetic operations. Vectors to be handled are stored

3 4

5

10

15

20

25

30

35

40

45

50

55

EP 0 981 107 A1

4

in a vector register 23.

[0030] 23 is the vector register for storing vector data
for the vector engine 22 to operate.
[0031] 24 is the clipping engine for executing clipping.
[0032] 25 is a Y-sort INDEX, for storing the Y index for
a sort engine 27 to execute Y sorting.
[0033] 26 is an X-sort INDEX, for storing the X index
for the sort engine 27 to execute X sorting.
[0034] 27 is the sort engine (sort engine) for searching
a polygon to enter the target fragment in the buffer 6 by
executing X sorting and Y sorting. The searched poly-
gon is stored in the buffer memory 2a, and is also sent
to the fill processor 3 for rendering. The sort engine 27
also controls a polygon TAG 28 and a polygon cache
34.
[0035] 28 is the polygon TAG, which is a buffer for stor-
ing the TAG of the polygon cache 34.
[0036] Fig. 3 is a functional block diagram of the
geometry processor 2. In Fig. 3, 31 is a cache controller
for controlling the later mentioned material caches 42,
45, 51b, 52a and 53a, and a light cache 51a.
[0037] 32 is a material TAG for storing the TAG of the
later mentioned material caches 42, 45, 51b, 52a and
53a, and light cache 51a.
[0038] 33 is a light TAG, which is a buffer for storing
the TAG of the later mentioned light cache 51a.
[0039] 34 is a polygon cache, which is a cache mem-
ory of polygon data.
[0040] 35 is an initial parameter calculator, for deter-
mining the initial value of DDA.
[0041] 36 is a Z comparator array for executing Z com-
parisons between polygons for hidden surface removal
processing, and also for padding the polygon ID and
internal ratios t0, t1 and t2. The Z comparator array 36
comprises 8x8=64 units of Z comparators. Since these
Z comparators operate in parallel, 64 pixels can be
simultaneously processed. Each Z comparator stores
data on a polygon. For example, a polygon ID, iz, t0, t1,
t2, window, stencil and shadow are stored.
[0042] 37 is a vertex parameter buffer, which is a
buffer for storing parameters of a vertex of a polygon.
Corresponding to the Z comparator array 36, the vertex
parameter buffer has a size capacity for 64 polygons.
[0043] 38 is an interpolator for calculating the param-
eters of a pixel by interpolation based on the calculation
result of the Z comparator array 36, t0, t1, t2, iz and the
content of the vertex parameter buffer 37.
[0044] Fig. 4 is a functional block diagram of the tex-
ture processor 4. In Fig. 4, 41 is a density calculator for
calculating the blending ratio for fog or depth cueing.
[0045] 42 is a material cache for storing data on depth
information. For example, Depth enable, Depth function,
Depth density, Depth end z, Texture enable, and Fog
enable are stored.
[0046] 43 is a window register, which is a buffer for
storing information on windows. For example, kz, cz, fog
function, fog density and fog end z are stored.
[0047] 44 is an address generator for calculating

addresses on a texture map based on the texture coor-
dinates Tx, Ty and LOD.

[0048] 45 is a material cache for storing data on mate-
rial. For example, translucency enable, texture type, off-
set x, y, size x, y, repeat x, y, minor x, y, and color id are
stored.
[0049] 46 is a TLMMI calculator (TLMMI: Tri-Linear
Mip Map Interpolation) for executing tri-linear mip map
interpolation, which is three dimensional interpolation.
Mip map is a technique for anti-aliasing when texture
mapping is executed, that is, a technique for removing
texture jaggies. Mip map is based on the following prin-
ciple. Originally, the color (luminance) of an object face
to be projected to one pixel must be a mean value of
colors of the corresponding mapping area. Otherwise,
jaggies become outstanding, which drops the quality of
texture dramatically. However, if a mean value is deter-
mined for each pixel, the calculation load becomes too
high, which takes time to process, and which requires a
high-speed processor. Mip map solves this problem. In
mip map, a plurality of mapping data having a width
which is a multiple of 2 are prepared in advance so as to
simplify the tabulation of colors (luminance) of the map-
ping area corresponding to one pixel. A size of the
entire mapping area corresponding to one pixel is
between any two data of these plurality of data having a
width which is a multiple of 2. By comparing these two
data, the color of the corresponding mapping area is
determined. For example, when screen A (x 1) and
screen B (x 1/2) exist, the pixels of screen A and the pix-
els of screen B corresponding to each pixel of screen C
(x 1/1.5) are determined respectively. At this time, the
color of the pixel of screen C is a color between the pixel
in screen A and screen B.
[0050] 47 is a color converter for executing color con-
version at 4 bit texel. 48 is a color palette where color
information at 4 bit texel is stored. The color pallet 48
stores colors to be used for drawing graphics. Colors
that can be used for one pixel are determined corre-
sponding to the content of the color pallet 48.
[0051] Fig. 5 is a functional block diagram of the shad-
ing processor 5. In Fig. 5, 51 is an intensity processor
for calculating the luminance for polygons after texture
mapping.
[0052] 51a is a light cache for storing light information.
For example, Light Position, Light Direction, Light Type,
Attenuation, Cutoff Spotexp. Light Color and Light
Ambient are stored.
[0053] 51b is a material cache for storing information
on material. For example, Sine, Material specular, mate-
rial emission are stored.
[0054] 51c is a window register for storing information
on windows. For example, Screen center, Focus, Scene
ambient are stored.
[0055] 52 is a modulate processor for executing asso-
ciations of polygon color and texture color, intensity
modulation and fog processing.
[0056] 52a is a material cache for storing information

5 6

5

10

15

20

25

30

35

40

45

50

55

EP 0 981 107 A1

5

on materials. For example, Polygon color, and Texture
mode are stored.

[0057] 52b is a window register, which is a buffer for
storing information on windows. For example, Fog Color
is stored.
[0058] 53 is a blend processor for blending data on the
color buffer 54 and writing the blended data to the color
buffer 54. The blend processor 53 blends the current
pixel color and the pixel color of the frame buffer based
on the values of the blend rate register, and writes the
blended data to the frame buffer of the bank indicated
by the light bank register. With the blend processor 53,
residual image processing can be executed.
[0059] 53a is a material cache for storing information
on materials. For example, blend mode is stored.
[0060] 54 is a color buffer, which is an 8x8 size color
buffer. The color buffer 54 has a double bank structure.
[0061] 55 is a plot processor for writing data on the
color buffer 54 to the frame buffer 5a.
[0062] 56 is a bitmap processor for executing bit map
processing.
[0063] 57 is a display controller, which reads data of
the frame buffer 5a, supplies the data to DAC (Digital to
Analog Converter), and displays the data on a display
which is not depicted here.
[0064] Fig. 6 is a block diagram of the equipment
shown in Fig. 1 - Fig. 5, created for explanatory pur-
poses. The image processing unit 101 is connected with
the CPU1 and exchanges commands and data with the
CPU1, and accesses an external storage device 102,
such as a hard disk, a buffer memory 103, a texture
buffer 104 and a frame buffer 5a. The texture buffer 104
stores texture maps. This texture buffer 104 executes
high quality texture mapping in real-time, therefore a
high-speed operation is required. The buffer memory
103 also stores compressed texture data along with
other data. The buffer memory 103 is a general buffer
memory, which has a slower speed and larger capacity
then the texture buffer 104. The image processing unit 4
of the embodiment 1 of the present invention has a
function for reading compressed texture data from the
buffer memory 3, executing data decompression, and
writing that data to the texture buffer 104, in addition to
ordinary processing.
[0065] Fig. 7 is a block diagram of the image process-
ing unit 101. Fig. 7 corresponds to the flow of process-
ing. Numerals 112 - 119 are circuits for processing a
conventional three dimensional computer graphic sys-
tem. These circuits are cascaded. Numerals 111, 120 -
124, on the other hand, are circuits for executing the
processing of the embodiment 1 of the present inven-
tion. These circuits are cascaded, and the final output is
input to the texture generation circuit 117 via the texture
RAM interface 124.
[0066] A coordinate transformation circuit 112
receives a command from a later mentioned command
analysis circuit 111 and executes coordinate transfor-
mation for generating images. A clipping circuit 113

clips a portion outside the field of view after the data is
transformed to an eye coordinate system. A perspective
transformation circuit 114 transforms the eye coordinate
system to the screen coordinate system. A fill circuit 115
fills transformed images. A Z comparison circuit 116
compares Z values which indicate perspective, and exe-
cutes hidden surface removal by the Z sort method. A
texture generation circuit 117 generates texture based
on the texture data. A color modulation circuit 118 and a
blend circuit 119 adjust the color of images.

[0067] A command analysis circuit 111 analyzes com-
mands from the CPU1, distinguishes a command (data)
for image generation and a command (data) for updat-
ing texture data, and channels the commands to the
coordinate transformation circuit 112 and FIFO (First-In-
First-Out) 120. The FIFO 120 is a first-in-first-out mem-
ory for absorbing the difference between the data read
speed and the data decompression/write speed. FIFO
is a memory used for data exchange between two parts
which have different timing, and can adjust the differ-
ence even if timing is different at both ends of FIFO. A
data decompression circuit 121 is a circuit for decom-
pressing the compressed data which was input. A pal-
ette transformation circuit 122 is a circuit for executing
palette transformation. A MIP MAP generation circuit
123 is a circuit for automatically generating a mip map.
Mip map is a technique for anti-aliasing when texture
mapping is executed, that is, a technique for removing
jaggies. A texture RAM interface (I/F) 124 is an interface
with a texture buffer (RAM) 104, which has a mecha-
nism for mediating between ordinary image processing
and updating texture.
[0068] The operation will now be explained.
[0069] Data compression is very effective for such
image data as a texture map. For example, a full color
(16,000,000 colors) image can be expressed by 8 bit
per texel, since in most cases several hundred colors
are actually used. In mip map, a plurality of mapping
data having a width which is a multiple of 2 is prepared
to simplify the tabulation of colors (luminance) of the
mapping areas corresponding to one pixel, and a mip
map, which is a simple reduction of the original image,
can be easily generated only if the original image is
available. The image data often has the same color as
the texel color of a nearby area where many repeat pat-
terns exist, therefore a general compression algorithm,
such as run length and slide dictionary, can easily be
applied.
[0070] If the data is stored in a compressed state,
however, decompression processing is required to use
the data, which takes time. Since texture data is
accessed at high-speed, compressed data is not easy
to use, and the data must be stored in a non-com-
pressed state.
[0071] With the foregoing in view, the embodiment 1
of the present invention makes high-speed access pos-
sible and improves the efficiency of memory use by stor-
ing data in a non-compressed state in the texture buffer

7 8

5

10

15

20

25

30

35

40

45

50

55

EP 0 981 107 A1

6

104, which must be accessed at high-speed, storing
compressed data in the other buffer (buffer memory
103), and has a mechanism to update the texture buffer
104 in real-time.

[0072] In Fig. 7, when a command (data) for image
generation is transferred from the command analysis
circuit 111 to the coordinate transformation circuit 112,
texture generation, color modulation, and blending
processing are executed based on coordinate transfor-
mation, clipping, perspective transformation, filling, Z
comparison, and non-compressed data in the texture
buffer 104.
[0073] When a command (data) for updating the tex-
ture data is transferred from the command analysis cir-
cuit 111 to the FIFO 120, the following processing is
executed.
[0074] The FIFO 120 is a buffer to adjust the data read
speed and data decompression/write speed. Data flow
is different between reading and decompressing + writ-
ing. Since data read involves simple memory access,
the data transfer speed is constant, such as 1 byte at 1
clock. But it is difficult to estimate how many bytes the
data will become when the data is decompressed,
because this depends on the compression method. For
example, 1 byte data, which was input, may become 2
bytes or 0.5 bytes. As Fig. 8 shows, when 4 bytes of
input data A, B, C and D become 8 bytes, A'0, A'1, A'2,
A'3, BC', D'0, D'1 and D'2, if the bus transfer capability
of output is twice that of input, it seems that data volume
will be balanced and no data wait time occurs. However,
in actual processing, wait time occurs since data flow is
not constant, therefore extra wait states must be cre-
ated. In the example in Fig. 8, for example, a wait state
is required before reading the data B after reading the
data A, and after reading the data D, respectively. Also
two wait states are required after A'2 and A'3, which is
data after decompression.
[0075] So the FIFO 120 adjusts the timing. In the
FIFO, data written at any time by the input side can be
output at any time in the sequence of writing by the out-
put side. Therefore the CPU1 can issue a command
regardless the data decompression state in the image
processing unit 101. The CPU1 does not have to distin-
guish a command (data) for image generation from a
command (data) for updating the texture data.
[0076] When the data decompression circuit 121
receives a command (compressed data) for updating
the texture data, decompresses the data, and returns
the data to a non-compressed state. The compressed
data has been stored in the external storage device 102
or the buffer memory 103.
[0077] In a CG system using texture mapping, a large
volume of texture data must be used to generate real
and gorgeous images most easily. Therefore there is an
enormous number of types of compressed data pre-
stored. On the other hand, there is much less texture
data, which is actually used simultaneously. When the
texture data in the texture buffer 104 is insufficient, the

CPU1 issues a command to read the necessary com-
pressed data from the buffer memory 103, decompress
the data, and writes the data to the texture buffer 104.
Since the CPU1 knows which texture data to use and
what kind of texture data has been stored in the texture
buffer 104, the CPU1 can easily issue the command by
comparing the texture data to be used and the texture
data stored in the texture buffer 104.

[0078] Compression and decompressing processings
are executed according to a commonly known algo-
rithm. For example, run length encoding, sliding diction-
ary, Huffman, and discrete cosine transformation are
used. For the format, JPEG combining discrete cosine
transformation and Huffman, for example, is used.
[0079] Run length encoding is an encoding method
used when a repeat of the same pattern appears fre-
quently. The length of a pattern is called "the run". When
the run is long, the data length can be shortened by
encoding the run before transferring, rather than trans-
ferring the pattern as is.
[0080] Sliding dictionary is a method where previous
data is stored, and this data is used for data compres-
sion. This method is effective for mesh patterns.
[0081] Huffman is a code to be created such that the
average number of bits per sample becomes a mini-
mum when quantized sample sets are encoded. If Huff-
man is used, palette transformation can be executed
with great flexibility. For example, when color is simple,
such as in the case of images for animation, long pat-
terns often appear while short patterns rarely appear. In
this way, appropriate encoding is possible according to
the nature of the image.
[0082] JPEG (Joint Photographic Experts Group) is a
color still picture compression system established by a
group promoting the standardization of a color still pic-
ture compression system. JPEG is widely used for mul-
timedia applications which handle still pictures, such as
on personal computers.
[0083] For the texture data after data decompression
processing is executed, palette transformation is exe-
cuted by the palette transformation circuit 122. Then the
MIPMAP generation circuit 123 generates a mip map
corresponding to the decompressed data.
[0084] The texture data after data decompression
processing is executed is written to the texture buffer
104 by the texture RAM interface 124. When the texture
buffer 104 does not have an open area, the texture data
overwrites other data. For example, data not frequency
used, old data, or data used a long time ago, can be
selected to be overwritten.
[0085] In this way, according to the embodiment 1 of
the present invention, virtually any texture data can be
used, even if the capacity of the texture buffer is small.
[0086] Since the texture data to be stored in the low
speed buffer memory is compressed, memory space
can be conserved.
[0087] Also because the data decompression mecha-
nism is included in the system, non-compressed data

9 10

5

10

15

20

25

30

35

40

45

50

55

EP 0 981 107 A1

7

flows only over the high-speed bus of the texture buffer
104, and compressed data flows over the low speed
bus, which allows sufficient use of the transfer capability
of the buses.

[0088] In the above description of the present inven-
tion, data for arithmetic operations and processing of
various memories, and the operation programs of the
CPU are provided to the image processing unit as a
storage medium, such as a CD-ROM, cassette ROM,
LD, FD and HD. The storage medium includes a
medium used for communication, such as a server and
communication lines of the Internet, LANs and personal
computer communications.

INDUSTRIAL APPLICABILITY

[0089] The present invention comprises a first storage
device for storing texture data and a second storage
device for storing a part of the texture data, and has an
updating step for reading texture data from the first stor-
age device and writing that data to the second storage
device in a predetermined case, therefore many texture
data can be used while using the small capacity second
storage device. As a result, both low cost and high-
speed processing can be implemented.
[0090] The present invention also has a first-in-first-
out storage device, which receives the read texture
data, temporarily stores this data, and outputs the data
to the data decompression circuit. Therefore a timing
adjustment in data exchange is unnecessary.

Claims

1. An image processing unit comprising a first storage
device for storing texture data, a second storage
device for storing a part of said texture data, and a
processing section for executing image processing
based on the texture data in said second storage
device, where said processing section updates the
texture data by reading the texture data from said
first storage device and writing that data to said
second storage device in a predetermined case.

2. The image processing unit according to Claim 1,
characterized in that said first storage device stores
data including compressed texture data, and said
processing section further comprises a data
decompression circuit for decompressing the read
texture data so as to write the decompressed data
to said second storage device.

3. The image processing unit according to Claim 2,
characterized in that said processing section fur-
ther comprises a first-in-first-out storage device for
receiving the read texture data, temporarily storing
this data, and outputting the data to said data
decompression unit.

4. The image processing unit according to Claim 1,
characterized in that said processing section fur-
ther comprises a palette transformation circuit for
executing palette transformation when the texture
data is updated.

5. The image processing unit according to Claim 1,
characterized in that said processing section fur-
ther comprises a mip map generation circuit for
generating a mip map when the texture data is
updated.

6. An image processing method using a first storage
device for storing texture data and a second stor-
age device for storing a part of said texture data so
as to execute image processing based on said tex-
ture data in said second storage device, comprising
an updating step for updating the texture data by
reading the texture data from said first storage
device and writing that data to said second storage
device in a predetermined case.

7. The image processing method according to Claim
6, further comprising a data decompression step for
decompressing the read texture data when the data
stored in said first storage device is compressed
texture data, characterized in that the decom-
pressed data is written to said second storage
device.

8. The image processing method according to Claim
6, further comprising a palette transformation step
for executing palette transformation when the tex-
ture data is updated.

9. The image processing method according to Claim
6, further comprising a mip map generation step for
generating a mip map when the texture data is
updated.

11 12

5

10

15

20

25

30

35

40

45

50

55

EP 0 981 107 A1

8

EP 0 981 107 A1

9

EP 0 981 107 A1

10

EP 0 981 107 A1

11

EP 0 981 107 A1

12

EP 0 981 107 A1

13

EP 0 981 107 A1

14

EP 0 981 107 A1

15

EP 0 981 107 A1

16

EP 0 981 107 A1

17

	bibliography
	description
	claims
	drawings
	search report

