US006522337B1

a2 United States Patent
Morioka

(10) Patent No.:
5) Date of Patent:

US 6,522,337 Bl
Feb. 18, 2003

(599 IMAGE PROCESSING APPARATUS, IMAGE
PROCESSING METHOD, AND RECORDING
MEDIUM

(75) TInventor: Seisuke Morioka, Tokyo (JP)

(73) Assignee: Sega Enterprises, Ltd., Tokyo (JP)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 272 days.

(21) Appl. No.: 09/603,430

(22) Filed: Jun. 23, 2000

(30) Foreign Application Priority Data

Jul. 8, 1999 (JP) .evvviiiiiiiiii i 11-193977

(51) Int. CL7 oo GO6T 17/00

(52) US.Cl o 345/582

(58) Field of Search 345/418, 419,

345/582, 420, 581, 583

References Cited
U.S. PATENT DOCUMENTS
6,326,964 B1 * 12/2001 Snyder et al. 345/419

* cited by examiner

Primary Examiner—Cliff N. Vo
(74) Antorney, Agent, or Firm—Dickstein Shapiro Morin &
Oshinsky, LLP

7

(56)

ABSTRACT

An image processing apparatus of the present invention
conducts update processing of MIPMAP-format texture data
within an updateable range, and during drawing processing,
it ascertains the level of detail to which texture data has been
updated. Thereupon, when conducting texture mapping,
texture data of the level of detail for which updating has
been completed is used. In this case, if the required texture
data has not been updated, then it is substituted by texture
data for which updating has been completed. Consequently,
even in cases where updating of all texture data is not
completed in time, it is possible to prevent significant
distortion of the image due to mixing of updated and
non-updated texture.

4 Claims, 11 Drawing Sheets

4/8
41 44 /45 47 Texture 49
/ Geomjtw Hidden < PI’OTJGS.:ME /
! Surface Rendering n Shading
CcPU Proce§smg Erasing Unit] Unit
Unit Uni
nit
Geometry Pixel Data
Processing Unit
42 /46 50 51 /32
Polygon Buffer Frame .
Work RAM
- Game Progeam Polygon Data Buffer CoE\{eArter > ADISp:a{
* Polygon Data For One Frame ([mage Data) pparatus
* Texture Data
. Disp\a.ly List

Data 33
Memory

N

31 Image Processing Apparatus

US 6,522,337 Bl

Sheet 1 of 11

Feb. 18, 2003

U.S. Patent

(I1232Q 0O 19197 359MOT)

dl

¥=a0"

Old dl

£=Q071 ¢=a01

‘DIld Ol

‘OlI4

0 ¢

e

(5

1=aon

dl

‘OI4

(I'e32Q 40 19977 1594TIH)
0=a01

Vi Old

RS

X ?7!Q

US 6,522,337 Bl

Sheet 2 of 11

Feb. 18, 2003

U.S. Patent

1e3|oun)

a8ew] paAe|dsiq

Hoys

swi) Bunepdn

(112153 JO 3487 }59MOT)

¥=Qao

RGA N
d¢ Ol

£=a071

BlEe(]
GLJFXUF,WI\.

dc ©Id

mev_o
sFew] peAedsi(

<

¢=a01

| SuoT
awt| 3unepdn
A__NHDQ 30O 19A97 var_M_Iu

g 0=aon

ele(]
8Un3xe | ‘g4

o¢ DI

. NU_<
1ox2]1°22 _ H_ o
pelepdn-uoNZ|
J4_7

\

ele(Sunix9] ‘|

S

N /NI
V¢ Ol

US 6,522,337 Bl

Sheet 3 of 11

Feb. 18, 2003

U.S. Patent

snjeieddy Buissoooid 98ew] | g

™

£e

Aowap

ele(

smeteddy
Aeydsig

JOHIDAUON

v/d

—

¢t

/

16

(e1eq a3ewy)

h

awel{ auQ 404 v

117 Aedsiq .
e1R(] 94MIX2] «
v3eq UOFAJOd -

JaHNng ejeq uosAjog we.i3o.d N_MEO.
awe. 4 Jayng uogAjog WYY oM
0§ \
9 yup Suissesoiy CF
ejeq |axid Aiowooan
Hun

Hun \ Hin Suise.3 m:_wﬁmo_n_ v
Suipeys nun Fuuopusy aoeung ?Joc._oo_o NdO

\ Buissaooid 7 usppIH — 7

&7 2nixa) Ly oy ¥ Iy

) &

US 6,522,337 Bl

Sheet 4 of 11

Feb. 18, 2003

U.S. Patent

(ZNAN'XN)
10109 |BeW.ION

(AL'x])s®3eulpio—_opH
2uNyx9 |

(ZNAN'XN)
10199 |BULION

(9NeA © §'D°Y)
uoIEWIOU] JO[0D)

(ZN'AN'XN)
10309 |BWION

(AL'X])s931eUIPI0-0]

anjep /7

(AL'X])s93eulpio—0D

(ZN'AN'XN)
10109\ [BULION

(AS'XGQ)s93eU1IpI0—0)
u99.10g

(AL'x1)s91euipio—0D
2unx9 |

p XOHBA

(enjeA 0 §'D°Y)
uoIleWLIOU] 40[0])

oNjeA 7

24nxa) 24n3x9 |
(enleA © 9'D'Y) (3NjeA 0 §'DY)
UOIBW.IoU] 40j0D) uonew.ou] J0jon
anjep 7 anjep 7
(AS'xS)sa3eulpio—o] (AS™xS)sa1euipio—0n
u2942g u99.0g
£ XA Z XOUBA

(AS'Xg)sajeulpio—o9
u9aI0g

| XOUIA

| uosAjod

v Ol

US 6,522,337 Bl

Sheet 5 of 11

Feb. 18, 2003

U.S. Patent

(ZN'ANXN)
10109 A |ewoN

ANZ.>Z.x2v
10109 A |BWION

(ZN'AN'N)
10109 A [EWJON

ao’

aon

aon

(AL'x])s931euIpio-0)
24NIx3 |

(AL'X1)S91euipio—o)
2uMxa |

(3NEAD 9O 'Y)
uoIlew.Iou] 40j0D

(3NEAD ' DY)
UOIBWLIOU] 40]0D)

(AL'x})s83euIpio-op
24Nn3xa |

anjep Z

anjepA 7

(3N_AD 'g'D ")
uoljewoju] 40|0)

(AS'xS)s91eUIpIO—0D
u99.109g

(AS'xg)saeulpio—0n
u9910g

anjepA Z

€ 1°xXid

Z IPxld

(AS'xS)sajeulpio-o0)
u29.10g

L 19X!d

G Old

US 6,522,337 Bl

Sheet 6 of 11

Feb. 18, 2003

U.S. Patent

Hun Suipeys

99

e}eq 4NIx9 |

\
¥9
|eusis

$S2.ppY

co_umctopE\

9INQLIY 24N3X3 |

eyeq 49410
< : T
(ALX1)s®3eulpio-o0)
2Nyx9 |
S
leusig _M,__wm_m wnoug
A0[0D m\:.ﬁx__z \ Buiddi|n \ Hun
/ i9jejod / J0}esu9N) aot \ aon Sunapuay
< ~ 9] ssa.ppy paxnding e
ao parepdn—"|
Aowsiy
i9peay
2unyxa |

7

79 (]24mxa]

ao paiepdn

Aoway aunixa |

e}e(] a4nIxa |

\

p
59

Hun

Sunepdn

eleq

1e(Q 24NMX9|

N

24n1xa])
7
19

IOM

%

U BuIssad0id 94n1x9) 8y

9 OId

US 6,522,337 B1

Sheet 7 of 11

Feb. 18, 2003

U.S. Patent

aes|n

a3ew] paAe|dsi(

guoT

awi} Sunepdn

(I'eyaq J0O 19A97 1s8yUSIH)

0=a07

49p40 Sunepdn

ealdy eje
94NIX9 |
polepdn-uoN

28—

el 24NIX2| "G/

ealy eleq

R

< =
1001
//\\ .Nm\\ 7
_UWOI_J Vs p \\
el 4) e \ 7 £=001
s r
.«»W\\\\\\\V\ 2\\\\ sumiro \\

i, "Old

as. old

Jespoun
s8ew) paAe|dsiq

Hoys
awi] 3unepdn

Aeidsiq 30
|9A97] 3samon]
v=0a01

eieq
QIN}xa |
g ya

oL D14 9L Dl4 VL ‘DI

U.S. Patent Feb. 18, 2003 Sheet 8 of 11 US 6,522,337 Bl

(256,0)
, 256 256
PR NE N
' I D/gg LOD=10
I AY
y 256(ao/(\i,m F"“[‘
| _g___: Texture Data B 75
Texture Data A TT/ 2 t0D
r_*".‘T
{__11 [0D=1
T%LOD af ——74
% 0D=2|_—
L, 73
423
B

7

)
72 71(L0D=4)
(L0D=3)

US 6,522,337 Bl

Sheet 9 of 11

Feb. 18, 2003

U.S. Patent

P |9X9] —

\

g 40[0D

O 40{0D

D (9%
\. _ 1

q |9x9]

g 40i0D

WV 40100

=

6 Ol

U.S. Patent Feb. 18, 2003 Sheet 10 of 11 US 6,522,337 Bl

FIG. 10
(sTART)

Updating Texture Data In
Sequence, Starting From Lowest | S1
Leve! Of Detail At Texture Data

Updating Unit 61
NO W

S2
_Qming For Displaying Scen>
\/YES

Supplying Updated LOD To S3
Texture Header Memory 62

Receiving Pixel Data S4

Outputting Texture Attribute
Information Corresponding To S5
Texture [D From Texture Header
Memory 62
N
Comparing Updated LOD With S6
Calculated LOD At Clipping
Circuit

\]/ S7

chlated LOD Is Higher Than Updated LOD 7
\y YES

Outputting Updated |S8 Outputting Calculated S9
LOD LOD
J

Generating Addresss Based On Texture | gy
Attribute Informating, LOD And Texture
Co—ordinates At Address Generator 64

Reading Out Texture Data And Trilinear | S11
Filtering

S12

NO

Processing For One Frame Has Been
Completed ?

YES

End

US 6,522,337 Bl

Sheet 11 of 11

Feb. 18, 2003

U.S. Patent

€0l
\
801 LOI 90 weJ3o.g 1ot
\ \ \ BuUISs990.44 \
a5ew] _
}un J9UBAUOY 4ayng weugoid sawer)
Aejdsiqg v/d swe.H %s!d pieH Hun aneul
\4 V
sng 60}
_ |
Jayn SEYIT |
el e Wvd tom| || ndo
1
I
X X — N
A8 LLL e} ¢0!
AOWB 601

Ll

PRI

US 6,522,337 B1

1

IMAGE PROCESSING APPARATUS, IMAGE
PROCESSING METHOD, AND RECORDING
MEDIUM

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to an image processing
apparatus and image processing method, and a recording
medium storing a program for causing this image processing
method to be implemented in a computer, and more
particularly, it relates to an image processing apparatus,
image processing method and storage medium, whereby
images can be displayed without significant distortion, even
in cases where updating of texture data in a particular scene
is not completed in time.

2. Description of the Related Art

A game apparatus or simulation apparatus generates and
displays images corresponding to the progress of a game, or
the like, by executing a game program or simulation pro-
gram in response to operational inputs made by an operator.
For this purpose, it comprises an integral image processing
apparatus and display apparatus.

The image processing apparatus comprises a geometry
processing unit, rendering unit, texture processing unit,
frame buffer and digital/analogue (D/A) converting unit, and
the like. The geometry processing unit performs co-ordinate
conversion of polygon data constituting objects. More
specifically, firstly, the geometry processing unit converts
polygon data from an object co-ordinates system (local
co-ordinates system defining object) to a global co-ordinates
system (co-ordinates system wherein objects have positional
relationships). Thereupon, the geometry processing unit
converts polygon data from a three-dimensional (3D) global
co-ordinates system to a two-dimensional (2D) screen
co-ordinates system (co-ordinates system defined on a
screen). In other words, the geometry processing unit carries
out perspective processing.

The rendering unit converts polygon data that has been
converted to the screen co-ordinates system into image data
in pixel units. The texture processing unit has a texture
memory storing texture data (colours, patterns, and the like,
of the surfaces of objects), and it performs texture mapping.

The image data in pixel units generated by the rendering
unit is stored in the frame buffer. The digital/analogue
converting unit converts the digital-format image data in
pixel units stored in the frame buffer into an analogue signal,
which is supplied to the display apparatus, where images are
displayed.

When displaying images, high speed is required in the
rendering process. Consequently, it is also necessary to
access the texture memory at high speed. In general, in order
to perform high-speed access, it is desirable to use an SRAM
(Static Random Access Memory) as a texture memory, but
compared to a DRAM (Dynamic Random Access Memory),
or the like, an SRAM involves extremely high cost per unit
bit (high cost with respect to capacity).

On the other hand, in order to make the displayed images
more realistic, it is necessary to use more texture data, and
in cases where a DRAM is used for the texture memory, due
to the requirement for high-speed access to the aforemen-
tioned texture memory and the requirement of low cost of
the texture memory, it is difficult to enlarge capacity very
greatly.

Therefore, the required texture data is stored in an exter-
nal memory (hard disk, or the like) separate from the texture

10

15

25

40

45

50

55

60

65

2

memory. By providing a time period during which no
drawing is performed at times when the scene of the
displayed image changes and by rewriting the texture data in
a portion or the whole of the texture memory during this
time period, it is apparently possible to handle a large
amount of texture data.

FIGS. 1A-1E illustrate modes of storing MIPMAP tex-
ture data. FIGS. 1A-1E show, for example, texture data
having five levels of detail (hereinafter, called LOD, for the
sake of convenience). The horizontal axis is the x axis and
the vertical axis is the y axis. FIG. 1A shows texture data
having LOD=0, which is the highest level of detail. This data
has the highest image resolution, and the size of the x axis
in this data area is Size X, whilst the size of the y axis is Size
Y.

FIG. 1B shows texture data having the next level of detail
LOD=1; FIG. 1C shows texture data having the next level of
detail LOD=2; FIG. 1D shows texture data having the fourth
level of detail LOD=3; and FIG. 1E shows texture data
having the lowest level of detail LOD=4. The texture data
for LOD=1 to LOD=4 is derived by reducing the texture data
for LOD=0. In other words, if the LOD value of the texture
data rises to 1, then the x axis and y axis are reduced to ¥
(surface area to %).

Therefore, the higher the level of detail, the lower the
LOD value and the greater the amount of data, whereas the
lower the level of detail, the higher the LOD value and the
smaller the amount of data. Texture data of differing levels
of detail, from LOD=0 to LOD=4, is used according to the
size displayed on the screen. In other words, image process-
ing is optimized in such a manner that, if the size displayed
on the screen is large, then texture data of a higher level of
detail is used, and if the size displayed on the screen is small,
then texture data of a lower level of detail is used.

FIGS. 2A-2E show a example of a method for updating
MIPMAP texture data as shown in FIGS. 1A-1E. In the
example in FIGS. 2A-2E, the updating (rewriting) process
is carried out in sequence, starting from the texture data of
the highest level of detail (LOD=0). FIG. 2A shows texture
data 0 having LOD=0, which is the highest level of detail,
FIG. 2B shows texture data 1 having LOD=1, FIG. 2C
shows texture data 2 having LOD=2, FIG. 2D shows texture
data 3 having LOD=3, and FIG. 2E shows texture data 4
having LOD=4, which is the lowest level of detail.

The texture data 0 having the highest level of detail has
the largest volume of data, and therefore it has the longest
updating time, but the image displayed thereby is the most
clear. Thereupon, as the updating process proceeds through
texture data 1, texture data 2, texture data 3, texture data 4,
the volume of data becomes smaller and the data volume of
texture data 4 is the smallest. Consequently, texture data 4
having the lowest level of detail has the shortest updating
time period, but the image displayed thereby is the least
distinct.

Here, the area of the texture data 0 where the texture data
has been updated is taken as the updated texture data area 11
indicated by the diagonal lines, and the area where texture
data has not yet been updated is taken as the non-updated
texture data area 12. In this case, the data at texel 21, a texel
being the picture element unit for texture data, is data for
which updating has been completed, but the data at texel 22
is data which has not been updated. Therefore, since the
displayed image contains a mixture of updated texture data
and non-updated texture data, the image will be distorted.
However, since this occurrence is undesirable, usually, tex-
ture data is used in image processing for a new scene only

US 6,522,337 B1

3

after it has been confirmed that updating for all texture data
from texture data 0 to 4 has been completed.

Nevertheless, in cases where scenes change rapidly with
the passage of time, such as in game apparatuses, there has
been a problem in that the fact of having to wait for updating
of MIPMAP-format texture data to be completed has inter-
rupted the flow of scenes.

Moreover, although it is possible to regulate the volume
of texture data to a smaller data volume, in order that texture
data can be updated within a prescribed period of time in
such a manner that the flow of scenes is not interrupted, in
this case, a problem arises in that insufficient usable texture
data can be created.

SUMMARY OF THE INVENTION

Therefore, it is an object of the present invention to
provide an image processing apparatus whereby distortion
of displayed images can be suppressed, as far as possible, in
cases where updating of texture data is not completed in time
when displaying a prescribed scene.

In order to achieve the aforementioned object the present
invention conducts update processing of MIPMAP-format
texture data within an updateable range, and during drawing
processing, it ascertains the level of detail to which texture
data has been updated. Thereupon, when conducting texture
mapping, texture data of the level of detail for which
updating has been completed is used. In this case, if the
required texture data has not been updated, then it is
substituted by texture data for which updating has been
completed. Consequently, even in cases where updating of
all texture data is not completed in time, it is possible to
prevent significant distortion of the image due to mixing of
updated and non-updated texture.

In order to achieve the aforementioned object, the present
invention is An image processing apparatus for processing
drawing pixel data by using texture data corresponding to a
plurality of levels of detail, comprising:

a rendering unit for calculating the level of detail of the

pixel data to be drawn; and

a texture processing unit for updating at least a portion of

the texture data corresponding to the plurality of levels
of detail and for processing the texture data by using the
level of detail of the updated texture data instead of
calculated level of detail, in case that the texture data
corresponding to the calculated level of detail has not
yet been updated when drawing the pixel data.

In order to achieve the aforementioned object, for a more
appropriate aspect of the present invention, the texture
processing unit of the aforementioned image processing unit
updates the texture data corresponding to the plurality of
levels of detail in sequence starting from the lowest level of
detail, and compares the level of detail of the updated texture
data with the calculated level of detail, and processes the
texture data by using the highest level of detail of the
updated texture data in case that the calculated level of detail
is higher than the highest level of detail of the updated
texture data.

According to the present invention described above, it is
possible to display images without significant distortion,
even in cases where updating of texture data is not com-
pleted in time, when displaying a particular scene.

In order to achieve the aforementioned object, the present
invention provides an image processing method for process-
ing drawing pixel data by using texture data corresponding
to a plurality of levels of detail, comprising the steps of:

calculating the level of detail of the pixel data to be

drawn;

5

10

15

20

25

30

35

40

45

50

55

60

65

4

updating at least a portion of the texture data correspond-

ing to the plurality of levels of detail; and

processing the texture data by using the level of detail of

the updated texture data instead of calculated level of
detail, in case that the texture data corresponding to the
calculated level of detail has not yet been updated when
drawing the pixel data.

In order to achieve the aforementioned object, the present
invention provides a recording medium storing a program
for causing a computer to implement an image processing
method for processing drawing pixel data by using texture
data corresponding to a plurality of levels of detail, the
image processing method comprising the steps of:

updating at least a portion of the texture data correspond-

ing to the plurality of levels of detail; and

processing the texture data by using the level of detail of

the updated texture data instead of the level of detail of
the pixel data.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1A-1E are diagrams for describing modes of
storing MIPMAP texture data;

FIGS. 2A-2E are diagrams for describing an example of
updating MIPMAP texture data;

FIG. 3 is a block diagram showing the composition of one
embodiment of an image processing apparatus 31 to which
the present invention is applied;

FIG. 4 is a diagram for illustrating one example of
polygon data stored in the polygon buffer 46 in FIG. 3;

FIG. 5 is a diagram showing one example of pixel data
output by the rendering unit 47 in FIG. 3;

FIG. 6 is a block diagram showing an example of the
composition of the texture processing unit 48 in FIG. 3;

FIGS. 7A-T7E are diagrams for describing an example of
updating MIPMAP texture data in the present invention;

FIG. 8 is a diagram for describing MIPMAP texture data
on a texture co-ordinates system;

FIG. 9 is a diagram for describing a mixture ratio signal
output by the address generator 64 in FIG. 6;

FIG. 10 is a flowchart for describing the processing
operation of the texture processing unit 48; and

FIG. 11 is a block diagram showing a further embodiment
to which the present invention is applied.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

Below, an embodiment of the present invention is
described with reference to the drawings. However, this
embodiment does not limit the technical scope of the present
invention.

FIG. 3 is a block diagram showing the composition of one
embodiment of an image processing apparatus 31 to which
the present invention is applied. The CPU (Central Process-
ing Unit) 41 executes a game program previously stored in
a work RAM (Random Access Memory) 42, and generates
polygon data constituting objects, and viewpoint informa-
tion for the displayed screen, and the like. The polygon data
and display list generated by the CPU 41 is stored in, and
read out from, the work RAM 42. Texture data read out from
an external data memory 33 (for example, a hard disk, or the
like), according to need, is also stored temporarily in the
work RAM 42.

The CPU 41 supplies polygon data, which is generated in
accordance with operational inputs and the game program

US 6,522,337 B1

5

and is defined in terms of an object co-ordinates system, to
a geometry processing unit 44. The geometry processing
unit 44 converts the supplied polygon data based on an
object co-ordinates system to data based on a three-
dimensional global co-ordinates system. Thereupon, the
geometry processing unit 44 conducts perspective conver-
sion whereby the polygon data converted to a three-
dimensional global co-ordinates system is converted to a
two-dimensional screen co-ordinates system. The polygon
data defined in terms of a screen co-ordinates system gen-
erated by the geometry processing unit 44 in this way is
stored in a polygon buffer 46. Polygon data for one frame is
stored in the polygon buffer 46.

A hidden surface erasing unit 45 then conducts hidden
surface erasure processing with respect to the polygon data
in the polygon buffer 46. This hidden surface erasure pro-
cessing involves displaying the forwardmost polygons in the
display screen, on the basis of their distance from the
viewpoint (Z value). The polygon data for which hidden
surface erasure processing has been completed by the hidden
surface erasing unit 45 is then supplied to a rendering unit
47, where rendering is carried out.

One example of polygon data stored in the polygon buffer
46 is shown in FIG. 4. This diagram shows one example of
vertex data constituting a polygon 1. In this example,
polygon 1 is constituted by four vertex data. Data for vertex
1 comprises: screen co-ordinates indicating a position on a
display screen (Sx, Sy); a Z value indicating a depth in the
display screen; colour information (R, G, B, a value); texture
co-ordinates (Tx, Ty); a normal vector (Nx, Ny, Nz); and the
like. Data for vertex 2, vertex 3 and vertex 4 is constituted
similarly to the data for vertex 1.

The polygon data stored in the polygon buffer 46 is read
out as appropriate, and when hidden surface erasure pro-
cessing has been completed, data for the polygons to be
displayed is supplied to the rendering unit 47. The rendering
unit calculates a LOD (level of detail), on the basis of the
size of the supplied polygon data. For example, if the
polygon data is larger in size, then the level of detail is set
to a higher level (low LOD value), and if the polygon data
is smaller in size, then the level of detail is set to a lower
level (high LOD value). In other words, texture data of
optimum resolution with respect to the size displayed on the
screen is selected. Thereupon, the rendering unit 47 converts
the polygon data to pixel data as illustrated in FIG. 5.

FIG. 5 shows data for three pixels in a polygon, as
calculated from the four vertex data constituting the polygon
1 shown in FIG. 4. Pixel 1 is constituted by screen
co-ordinates (Sx, Sy), a Z value, colour information (R, G,
B, a value), texture co-ordinates (Tx, Ty), LOD (level of
detail), and a normal vector (Nx, Ny, Nz). The data for pixel
2 and pixel 3 is constituted similarly to the data for pixel 1.
This pixel data is generally calculated by perspective inter-
polation.

The pixel data generated by the rendering unit 47 is
supplied to a texture processing unit 48. FIG. 6 shows an
example of the composition of the texture processing unit
48. The texture processing unit 48 carries out texture map-
ping. Texture data read out from the work RAM 42 is
supplied to the texture data updating unit 61. This texture
data updating unit 61 records and updates the supplied
texture data in a texture memory 65.

As illustrated in FIGS. 7A-7E, the updating of the MIP-
MAP texture data is carried out in sequence from the texture
data 71 of lowest level of detail (LOD=4) to the texture data
of higher level of detail (lower LOD value). FIG. 7A shows
texture data 71 of LOD=4 (lowest level of detail), FIG. 7B
shows texture data 72 of LOD=3, FIG. 7C shows texture

10

15

20

25

30

40

45

50

55

60

65

6

data 73 of LOD=2, FIG. 7D shows texture data 72 of
LOD=1, and FIG. 7E shows texture data 71 of LOD=0
(highest level of detail). In the example in FIGS. 7A-7E,
firstly, texture data 71 of LOD=4 (lowest level of detail) is
updated, and then texture data 72 (LOD=3) is updated.
Thereupon, texture data 73 (LOD=2) through to texture data
75 (LOD=0) are updated in sequence. The texture data
having the lowest level of detail (highest LOD value) have
a small data volume, and therefore the updating process for
this data is completed in a short period of time. Therefore,
even if the time period for updating processing is short, there
is a higher probability that updating for texture data of a
lower level of detail will have been completed.
Consequently, even in cases where updating has not been
completed for texture data of all levels of detail, it is more
reliable that updating of texture data of a lower level of
detail will have been completed.

In FIGS. 7A-7E, it is assumed that updating of the
MIPMAP-format texture data starts with texture data 71 of
LOD=4, and is ended partway through texture data 75
having the highest level of detail of LOD=0. The obliquely
shaded updated texture data area is the area where data has
been updated, and the non-updated texture data area 82 is the
area where data has not yet been updated.

The texture data updating unit 61 supplies the level of
detail for which updating has been completed (hereinafter,
called the ‘updated LOD value’, for the sake of
convenience,) to a texture header memory 62. In the
example in FIGS. 7A-7E, the texture data updating unit 61
supplies the updated LOD value (LOD=1) to the texture
header memory 62.

Attribute information for texture corresponding to a tex-
ture ID is previously stored in the texture header memory 62.
This texture attribute information comprises, for example,
storage position data for the texture data corresponding to
the texture ID in the texture memory 65. This storage
position data typically constitutes the origin and size of the
storage area. The rendering unit 47 supplies the texture ID
in the generated pixel data to the texture header memory 62.
The texture header memory 62 converts the supplied texture
ID to corresponding texture attribute information, and this
texture attribute information is then supplied to an address
generator 64. The texture header memory 62 records the
updated LOD value (in the example in FIG. 7, LOD=1)
supplied by the texture data updating unit 61, and supplies
it to a clipping circuit 63.

The rendering unit 47 supplies the LOD value (level of
detail) in the generated pixel data to the clipping circuit 63.
The clipping circuit 63 compares the LOD value supplied by
the rendering unit 47 (for example, LOD=0) with the
updated LOD value supplied by the texture header memory
62 (in the example in FIG. 7, LOD=1), and it outputs the
higher LOD value (lower level of detail). In other words, in
the example in FIG. 7, LOD=1 is output. Namely, the
supplied LOD value is clipped to the updated LOD value.

In this case, texel data 93 and 94 having LOD=0 (highest
level of detail) have not yet been updated, but the corre-
sponding texel data 91 and 92 having LOD=1 have already
been updated. Consequently, in cases where texture data of
LOD=0 is demanded, rather than accessing the texture data
in texels 93 and 94 of texture data 75, which has not been
updated, instead, the texels 91 and 92 in texture data 74 of
the level of detail one below (LOD value one above) are
accessed and read out. Consequently, there is no display of
texture data which has not been updated, and hence there is
no significant distortion of images. The LOD value (level of
detail) output by the clipping circuit 63 is supplied to the
address generator 64.

US 6,522,337 B1

7

The rendering unit 47 supplies the texture co-ordinates
(Tx, Ty) in the generated pixel data to the address generator
64. The rendering unit 47 then supplies the texture ID, LOD
value, and pixel data other than the texture co-ordinates (T,
Ty) to a shading unit 49. The address generator 64 generates
a corresponding address in the texture memory 65, from the
supplied texture attribute information (for example, the
origin and size of the storage area), the LOD value (level of
detail) and the texture co-ordinates (Tx, Ty), and it stores the
generated address signal in the texture memory 65.

FIG. 8 shows one example of MIPMAP-format texture
data on a texture co-ordinates system. In the example in FIG.
8, the horizontal axis is the x axis and the vertical axis is the
y axis. The storage areas for the texture data 75 through to
71 having LOD=0 (highest level of detail) to LOD=4 (lowest
level of detail) have respectively analogous shapes, as
shown in the diagram. Texture data A and texture data B
corresponding to the texture ID are displayed on the texture
data 75 having LOD=0. Texture data A is expressed by
origin (0,0) and size (256,256). Texture data B is expressed
by origin (256,0) and size (256,128). These storage position
data (origin and size) are the aforementioned texture
attribute information. Texel a0 (Tx, Ty) is located on texture
data A. Texels al, a2, a3 and a4 represent texels correspond-
ing to texel a0 at the different levels of detail from LOD 1
to LOD 4.

The method for calculating address co-ordinates in the
texture memory 65 is now described with reference to
texture data A. The address generator 64 identifies the
address of texture data A (texel a0) in the texture data 75
having LOD=0, on the basis of the origin (0,0) and size
(256,256) forming the attribute information for texture data
A, and the texture co-ordinates (Tx, Ty). Thereupon, the
address generator 64 calculates the texture co-ordinates
(address) of the texel corresponding to texel a0 (Tx, Ty) on
the basis of the supplied LOD value. These co-ordinates are
calculated by using formulae (1) and (2) below.

X=Tx/2-°P @)

y=1p/2-P (@)

Consequently, if the LOD value is 1, for example, then the
co-ordinates of texel al will be calculated as (Tx/2, Ty/2),
with respect to the origin of the texture data 74.

Moreover, the address generator 64 also generates a
texture data mixture ratio signal, on the basis of the supplied
texture attribute information, the LOD value (level of detail)
and the texture co-ordinates (Tx, Ty), and the generated
mixture ratio signal is supplied to an interpolator 66.

A method for generating colour data by means of a
bilinear filter is now described with reference to FIG. 9. FIG.
9 is an example wherein one pixel corresponds to a plurality
of texels (texel a to texel d). In FIG. 9, the horizontal axis
is the x axis and the vertical axis is the y axis. Taking the
smaller portion of x as ftx and the smaller portion of y as fty,
for the mixture ratio signal, and taking the colours of the
respective texels a to d as A, B, C, D, the colour data based
on a bilinear filter is calculated from formula (5), by means
of equations (3) and (4).

Tmp0=A-(1~ftx)+B-fix 3)
Tmpl=C-(1-fix)+D-fix ©)
Colour data=Tmp0-(1-fty)+Tmpl-fty O]

When the address signal is supplied to the texture memory
65, the corresponding texture data is read out and the read

10

15

20

25

30

35

40

45

50

55

60

65

8

out texture data is supplied to the interpolator 66. The
interpolator 66 conducts the aforementioned bilinear filter-
ing process on the basis of the supplied texture data and
mixture ratio signal. Here, filtering is carried out because
there is not necessarily a one-to-one correspondence
between the pixels in the display screen and the texels in the
texture memory, and in the example in FIG. 9, one pixel
(picture element) corresponds to a plurality of texels. The
processing implemented by the interpolator 66 is not limited
to bilinear filtering, for example, it may also carry out
trilinear filtering. As stated previously, bilinear filtering is a
method for filtering from 4 texels in a single texture map.
Trilinear filtering is a method whereby bilinear filtering from
4 texels is carried out respectively for two consecutive
MIPMAP data, and interpolation is then performed between
the two MIPMAP data according to the smaller LOD
(interpolating for a total of 8 texels). The interpolator 66
supplies the filtered colour signal to the shading unit 49.

Returning to FIG. 3, the shading unit 49 conducts shading
processing. For example, the colour data of pixels is
adjusted in accordance with the colour and position of the
light source. The shaded image data generated by the
shading unit 49 is then supplied to a frame buffer 50, where
it is stored temporarily. The digital-format image data stored
in the frame buffer 50 is supplied to a digital/analogue (D/A)
converting unit 51. The analogue signal generated by the
digital/analogue (D/A) converting unit 51 is then supplied to
the display apparatus 32 and displayed on a screen.

Next, the processing operations conducted by the texture
processing unit 48 are described with reference to the
flowchart in FIG. 10. Firstly, at step S1, when the texture
data read out from work RAM 42 is supplied to the texture
data updating unit 61, the texture data updating unit 61
updates the texture data and the updated texture data is
stored in the texture memory 65. This texture data updating
process is carried out in sequence, starting from the texture
data of the lowest level of detail (highest LOD value).

At step S2, the texture data updating unit 61 determines
whether or not the updating time period has ended and the
timing for displaying the scene has been reached. If it is
determined at step S2 that the timing for displaying a scene
has been reached, then the routine returns to step S1, and
texture data updating processing is executed again. If it is
determined at step S2 that the timing for displaying the scene
has been reached, then the routine moves on to step S3.

At step S3, the texture data updating unit 61 ends the
updating of texture data and supplies the updated LOD value
to the texture header memory 62, where it is stored. At step
S4, pixel data (texture ID, LOD, texture co-ordinates (TX,
Ty), and other data) is supplied from the rendering unit 47
to the texture processing unit 48.

At step S5, when texture ID is supplied to the texture
header memory 62, then the texture header memory 62
converts the texture ID to corresponding texture attribute
information, and this texture attribute information is sup-
plied to the address generator 64. The texture header
memory 62 supplies the temporarily stored updated LOD
value to the clipping circuit 63.

At step S6, the clipping circuit 63 compares the LOD
value (level of detail) supplied by the rendering unit 47 with
the updated LOD value supplied by the texture header
memory 62.

At step S7, the clipping circuit 63 determines whether the
LOD value (level of detail) supplied by the rendering unit 47
is smaller than the updated LOD value, in other words,
whether or not the level of detail thereof is higher. At step
S7, if it is judged that the LOD value (level of detail)

US 6,522,337 B1

9

supplied by the rendering unit 47 is smaller than the updated
LOD value, in other words, if the level of detail is higher,
then the routine proceeds to step S8, where the clipping
circuit 63 clips the LOD value to the updated LOD value and
supplies this updated LOD value to the address generator 64.
If, at step S7, it is determined that the LOD value (level of
detail) supplied by the rendering unit 47 is not smaller than
the updated LOD value, in other words, if it is not a higher
level of detail, then the routine proceeds to step S9, where
the clipping circuit 63 outputs the LOD value supplied by
the rendering unit 47, without alteration, to the address
generator 64.

At step S10, the address generator 64 generates a corre-
sponding address in the texture memory 65 on the basis of
the supplied texture attribute information, LOD value (level
of detail), and texture co-ordinates (Tx, Ty), and the gener-
ated address signal is supplied to the texture memory 65.

At step S11, texture data is read out from the supplied
address signal, and the texture data read out is supplied to the
interpolator 66. The interpolator 66 carries out trilinear
filtering on the basis of the supplied texture data, and outputs
a colour signal.

At step S12, it is determined whether or not the processing
of texture data for one frame has been completed, and if it
is determined that the processing of texture data for one
frame has not been completed, then the routine returns to
step S4, and the processing in steps S4 through to S12 is
carried out again. If it is determined at step S12 that texture
data processing for one frame has been completed, then the
processing operation is completed.

In this embodiment of the present invention, it is also
possible to calculate the optimum combination of updateable
LOD values previously on the basis of the texture updating
time, in such a manner that texture data having these
calculated LOD values is updated. In this case, the updated
LOD values may be at sporadic intervals. When rendering,
if the calculated LOD value is not yet updated, then render-
ing is carried out by using texture data for the nearest LOD
value which has been updated.

FIG. 11 is a block diagram showing the composition of a
further embodiment to which the present invention can be
applied. In the image display apparatus 31 shown in FIG. 3,
the geometry processing unit 44, hidden surface erasing unit
45, rendering unit 47, texture processing unit 48 and shading
unit 49 are implemented by dedicated hardware, but in the
example shown in FIG. 11, all or a portion of image
processing, such as geometry processing, hidden surface
erasing, rendering, texture processing, shading, and the like,
is implemented by a general-purpose computer by means of
a computer program.

An input unit 101, CPU 102, hard disk 103, memory 105
and frame buffer 106 are mutually connected by means of a
bus 109. An operator inputs operating information by con-
trolling the input unit 101. A game program and an image
processing program are previously stored on the hard disk
103. The CPU 102 reads out and executes the game program
and image processing program from the hard disk 103, as
and when necessary. Data, or the like, required by the CPU
102 when executing the program is stored in a work RAM
113 in the memory 105, as and when necessary.

Polygon data for one frame is stored in a polygon buffer
111 in the memory 105, and a Z value is stored in a Z buffer
112. The generated image data is stored in the frame buffer
106. Image data read out from the frame buffer 106 is
supplied to the digital/analogue (D/A) converting unit 107.
The digital/analogue (D/A) converting unit 107 converts the
supplied digital data (image data) to an analogue signal,
which is displayed on the display unit 108.

10

15

20

25

30

35

40

45

50

55

60

65

10

As a storage medium providing a user with a computer
program for executing the aforementioned processing, in
addition to an information storage medium, such as a
magnetic disk, CD-ROM, or the like, it is also possible to
include network-based transmission media, such as the
Internet, digital satellites, or the like.

As described above, according to the present invention,
since updating of MIPMAP-format texture data is carried
out starting from the lowest level of detail, and it is recorded
up to which level of detail the updating of texture data has
been completed, then even in cases where updating of
texture data has not been completed in time, it is possible to
conduct texture processing using texture data having a lower
level of detail, which has been completed. Consequently, it
is possible to prevent significant distortion of images, such
as mixing of updated and non-updated texture data, for
example.

The scope of protection of the present invention is not
limited to the above-described aspects of the invention, but
rather extends to the invention disclosed in the claims, and
to equivalents thereof.

What is claimed is:

1. An image processing apparatus for processing drawing
pixel data by using texture data corresponding to a plurality
of levels of detail, comprising:

a rendering unit for calculating the level of detail of the

pixel data to be drawn; and

a texture processing unit for updating at least a portion of

the texture data corresponding to the plurality of levels
of detail and for processing the texture data by using the
level of detail of the updated texture data instead of the
calculated level of detail if the texture data correspond-
ing to the calculated level of detail has not yet been
updated when drawing the pixel data.

2. The image processing apparatus according to claim 1,
wherein the texture processing unit updates the texture data
corresponding to the plurality of levels of detail in sequence
starting from the lowest level of detail, and compares the
level of detail of the updated texture data with the calculated
level of detail, and processes the texture data by using the
highest level of detail of the updated texture data in case that
the calculated level of detail is higher than the highest level
of detail of the updated texture data.

3. An image processing method for processing drawing
pixel data by using texture data corresponding to a plurality
of levels of detail, comprising the steps of:

calculating the level of detail of the pixel data to be

drawn;

updating at least a portion of the texture data correspond-

ing to the plurality of levels of detail; and

processing the texture data by using the level of detail of

the updated texture data instead of the calculated level
of detail if the texture data corresponding to the cal-
culated level of detail has not yet been updated when
drawing the pixel data.

4. A recording medium storing a program for causing a
computer to implement an image processing method for
processing drawing pixel data by using texture data corre-
sponding to a plurality of levels of detail, the image pro-
cessing method comprising the steps of:

updating at least a portion of the texture data correspond-

ing to the plurality of levels of detail; and

processing the texture data by using the level of detail of

the updated texture data instead of the level of detail of
the pixel data.

