a2 United States Patent

Saito et al.

US006437779B1

(10) Patent No.:
5) Date of Patent:

US 6,437,779 B1
Aug. 20, 2002

(549) IMAGE PROCESSING METHOD IMAGE
PROCESSING UNIT AND RECORDING
MEDIUM RECORDING INTEGRATED
SHAPING MODEL DATA AND IMAGE
PROCESSING PROGRAM TO BE USED
THEREOF

(75) Inventors: Tomoaki Saito; Takashi Ando, both of
Tokyo (JP)

(73) Assignee: Sega Enterprises, Ltd. (JP)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

(21) Appl. No.: 09/506,812

(22) Filed: Feb. 18, 2000
(30) Foreign Application Priority Data
Feb. 23,1999 (JP) .eoooiiviiiiiiiiiciie e 11-045535
(51) Int. CL7 oo GO6T 15/20
(52) US. Cl oot 345/420
(58) Field of Searchc.cccoceuvveiine. 345/419, 420,
345/473, 474, 475
(56) References Cited
U.S. PATENT DOCUMENTS
5,659,625 A * 8/1997 Marquardt 345/435
6,147,692 A * 11/2000 Shaw et al. 345/433

* cited by examiner

Primary Examiner—Phu K. Nguyen

(74) Antorney, Agent, or Firm—Dickstein Shapiro Morin &
Oshinsky LLP

(7) ABSTRACT

The present invention is an image processing method for
drawing an integrated shaping model which has a plurality
of models linked by a hierarchical structure, where at least
a first models has a plurality of vertices constituting poly-
gons and at least the position of a first vertex is influenced
by positions of a plurality of models and weight values from
these models. The data (110) of the integrated shaping model
comprises: format data of a common vertex buffer which
stores data on the plurality of vertices in the plurality of
models for each model; a vertex list which is created for
each model which influences the vertices and has vertex data
specified by a vertex ID in the common vertex buffer; and a
polygon list which is created for each model having the
polygon and includes polygon data where the vertex ID is
attribute data. The image processing method comprises steps
of: generating the common vertex buffer corresponding to
the plurality of models in the sequence of tracing of the
hierarchical structure according to the format data; gener-
ating model matrix data where the positions of the models
are set based on the game progress data; generating common
vertex data by executing the matrix calculation for gener-
ating vertex data after movement according to the model
matrix data weight calculation for integrating the weight
values from the models to the vertex data after movement,
for the vertex data of the vertex list of the models, and by
storing or adding this operated vertex data to areas according
to the vertex IDs in the common vertex buffer; and rendering
the polygon according to the common vertex data.

28 Claims, 24 Drawing Sheets

Movement of Integrated Shaping Model (Envelope)

U.S. Patent Aug. 20, 2002 Sheet 1 of 24 US 6,437,779 B1

Integrated Shaping Model (Envelopes)

FIG. 1A Basic Form
(PRIOR ART)

U

FIG. 1B Moved Form
(PRIOR ART)

3A

U.S. Patent Aug. 20, 2002 Sheet 2 of 24 US 6,437,779 B1

FIG. 2
Prior Art

Model 1

5 Model 2|/ |Model 6 |
e Ty

{ |[Model 3| | Model 5| |Model 7.

' [Motel 4 624 627

631

f32
633\ / 633

\ngght List Weight List //
Model ID and Model ID and
vertices which vertices whic

itself influences 1.1 itself influences

634:\"-”-!-.-| ' " v . | Ni _!"T "" ¥ / 634
: \ Calculated weight { “Calculated weight |/} E
| | value from value from ;
i | | other model 605! | other model :
635:\ ' 635
‘NBolveon List Poeonlist 4]

636 Normalize normal ine of
vertices of all models

l/L 609

Draw models of all models

U.S. Patent

Aug. 20, 2002 Sheet 3 of 24

FIG. 3
Prior Art
601

US 6,437,779 Bl

Calculate matrix of all models and save
them in data structure of each model.

d

Referring to weight list, read vertex
coodinates and normal line data indicated
by vertex indexes of model which is
influenced by target model.

|- 603

v

Convert the read vertex data to the vertex
data when the vertex data belongs to the
local coordinate system of model 4 based

on relationship in the basic form, and
multiply the converted vertex data by the
model matrix of modei 4.

/ 604

v

Multiply the vertex coordinates adn the
normal line data multiplied by the model
matrix, by the weight value in the weight
list 633, and integrate the values in the
weight vertex list 634 in the model 7 data
structure.

605
/

NO
Execute all weight lis

NO
Execute all models

606

607

Normalize normal line vectors of weight
vertex list 634.

v

Execute drawing of polygons in the polygon
list, referring to the vertex positions in the
weight vertex list 634.

610
End

U.S. Patent Aug. 20, 2002 Sheet 4 of 24 US 6,437,779 B1

FIG. 4

Integrated Shaping Model (Envelopes)

U.S. Patent Aug. 20, 2002 Sheet 5 of 24 US 6,437,779 B1

FIG. 5

Data Configuration of Integrated Shaping Model

M1

|
MaxM1-m2)° NV 2 MA4 : vaxomi-ma)

Max(M2-M3) M 3

Max(M3-M5): M 5

U.S. Patent Aug. 20, 2002 Sheet 6 of 24 US 6,437,779 B1

FIG. 6
fluencing
Model Model - p 1] M2 M3 M4 MS5
Vertex
V101 | 100%
V102 30% 30% 40%
V103 30% 30% 40%
V104 40% 60%
V105 40% 60%
V106 100%
Ml V107 | 100%
V108 60% 40%
V109 60% 40%
V110 40% 60%
V11l 40% 60%
V112 100%
V113 100%
V501 100%
V502 100%
M5 V503 100%
V504 100%
V505 100%
V506 100%

U.S. Patent Aug. 20, 2002 Sheet 7 of 24 US 6,437,779 B1

FIG. 7/

Movement of Integrated Shaping Model (Envelope)

U.S. Patent Aug. 20, 2002 Sheet 8 of 24 US 6,437,779 B1

FIG. 8A Basic Form

M4 z /\/,CDM4

<{>)‘X
Y
2(M4)

Vio3M2) ‘/f/ Vo2 (M2)

VID3(M4) \ },NCD Mz
V103(M3)/ M2

® VI02(M3) g
CDGB
X
N3 Y \cpm\a | X3
Y9
FIG. 8B Moved Form
M4
2 77 _cpma
VIo3(M4) 10z X
‘\\\ o\/\O (tﬁyvmz
N \q VIo2(M2)
N E X
\ \5 vaaw?
Vi03 s\ Y
\\\ \ MZ
0
V103 (M3)— .
z £ oG8
f);/< Vio2(M3) s G
M3 { X VI03(M3) X9
COM3

U.S. Patent Aug. 20, 2002 Sheet 9 of 24 US 6,437,779 B1

FIG. 9

Model Movement Calculation (Matrix Calculation) and
Weight Calculation

(Start)

Actual vertices Vxxx are distributed St

to respective models (M2, M3, M4)
which influence the verteces.

Convert the position coordinates of S2
the vertices distributed to the
influence models into the local

coordinate system of each model.

Set the model matrix which moves S3
each model according to the game
program,

L

Determine the positions of the S4
distributed vertices which move
along with the movement of the
model M2 by executing the matrix
calculation using model matrix of M2,

S5

Execute weight operation to the
distributed vertices so as to
calculate the new position of the
actual vertices by blending.

(e)

U.S. Patent Aug. 20, 2002 Sheet 10 of 24 US 6,437,779 B1

FIG. 10

Original Data of Integrated Shaping Model according to
3D Modeler

100

Converter

l

Conversion Data for Drawing Library

110

Record in CDROM (Recording Medium for Game)

U.S. Patent Aug. 20, 2002 Sheet 11 of 24 US 6,437,779 B1

10. CDROM
\ 12 110
Game Program Model Conversion Data
14
Drawing Library (Program)
20\ /N

36 Hardware

Boot

ROM
22 38 26 34

. Rendering Display

CPU Bus Arbiter Processor Device
24 28
System Memory Frame

(RAM) Memory

40 30
Audio
Mod
odem | Processor
32
Audio Memory
42
Control v

Pad

U.S. Patent Aug. 20, 2002 Sheet 12 of 24 US 6,437,779 B1

FIG. 12

Converter and Conversion Data
Create
Conversion Data

Design data of integrated S10
shaping modele(envelope) by
3D modeler.

Create the conversion Data | S12
corresponding to data format
for the drawing library from
the original data of integrated
shaping model by the
converter. The converted
data includes

S14

Create Game Program

Create a recording
medium(CDROM) for S16
recording the game program,
the conversion data, and the
drawing library

)

U.S. Patent

Aug. 20, 2002 Sheet 13 of 24

FIG. 13

[Game Starts J

Set the recording
medium(CDROM) to game
machine

>~

P

Game machine executes the
game according to game
program and generates model

matrix for moving the models.

\J

Game machine executes the
drawing ligrary to generate a
common vertex list by
executing a matrix operation
and a weight operation to the
vertices of each model.
Drawing library renderes the
polygons according to the
common vertex list and the
polygon list.

}

Display the image on the
display device according to
the image data drawn in the

flame buffer.

US 6,437,779 Bl

Game Machine and Drawing Library

S20

S22

S24

S26

U.S. Patent Aug. 20, 2002 Sheet 14 of 24 US 6,437,779 B1

FIG. 14

Procedure of Converter (1)

(Converter Starts)

~,
P

Divide the vertex list of the original model | S30
and distribute them to the models which
influence to the vertex.

v

Create format of common vertex (actual S32
vertex) buffer from the vertex data of
native group and the start weight group,
and assign consistent serial numbers in the
common vertex buffer as new vertex [Ds,

Rearrange the 4 groups of vertex list
distributed to each model for each one of
the models which influences the vertices.

All Models . S36
Determine the counter value for
each model having polygons.

v

S38 To next model

\2

S40 To next vertex list

v

Execute the weight calculation to the | 542
vertex data in the vertex list, and write
or add it in the vertex area in the
common vertex buffer

(Dummy calculation)

S44

Add +1 to the counter of the model to
which the written vertex belongs.

U.S. Patent Aug. 20, 2002 Sheet 15 of 24 US 6,437,779 B1

FIG. 19

Procedure of Converter (2)

S48
Complete Weight Calculation

for the model ? .
YES-eﬁieferring counter vaiszs

S46

Complete All
vertices of the
model ?

NO r\iﬁ S62

Generate Drawing
Command DP in the
polygon list of the model,
and release the common

"~ vertex buffer area.

S50 Generate non—drawing
command CP, register it in
non—drawing table, and
secure common vertex
buffer area for next model.

S54 Output the vertex list,
polygon list, and drawing
commnad as model data

S58

P.S

Complete the weight
calculation of non—~drawing
model ? >YES
(Referring counter value)

Complete all
models

S60

YES

NO Generate drawing command DP
in the polygon list of currently
pocessing model for the
non—drawing model for which
weigt calculation ended

A2
A3

(oo)

U.S. Patent

Aug. 20, 2002 Sheet 16 of 24 US 6,437,779 B1

FIG. 16

Distribution of Actual Vertices to Models and
Generation of Vertex List

(Start J

Determine the global coodinates of the position | gg2
coordinates and normal line data of the actual
vertices of the integrated shaping model in
basic form.

\!

Divide the actual vertices of the original model | g4
data into 4 groups based on the weight
according to the tracing sequence of the model
hierarchy.

\!

Sort the vertices of four groups for each model
which influences the vertices.

v

Generate the format of the common vertex S68
buffer for vertices which belong to the native
group and start weight group, assign a
consistent serial number to the native and start
weight vertices as a new vertex ID, and provide
them to the polygon list of each model.

566

Distribute 4 types of vertices to the models S70
which influence them. Convert the coordinate
data and normal line data of the vertex to the
local coordinate system of the model according
to the model matrix.
S72

Register the 4 types of vertices in the vertex
list of the distributed model. Referring to the
actual vertices in the vertex list is done by [Ds
or the entry value and offset value in the
common vertex buffer format.

S74

All models ?

(Ed)

US 6,437,779 Bl

Sheet 17 of 24

Aug. 20, 2002

U.S. Patent

ERFCIETY

JSITUoBR0d

—~

gt

Eled [SPON

G [°POIy

gyl
€

e
A

I
. £ OPON

¥ 18P0

ﬂ
¢ 19PON

VoS

vl

| 15POI

WAL} 2OUBNYUI YIIYM dnei zm__mm_, M%_Vc_
4-3/epow awes ay} Joj | | | Uaiim Buisg
L, SeOMeA B HOS AJU pUE JyBlom Buirey /ﬁ_
g0 1= > dnoib seaplsp
LUSY) 33UaN{ul Yalym dnoig) JuBiepA 2|PPIW}
/T §opow auies oy Jojl | m_%___ﬁ muvcn_ \
A7 SeOlBABYHOS Oju pue jybiem Buiney | | €21
Alllll.u_ 12177 dno.b seonep
3 | Juawp sousnyur yoiym dno.o zm_ﬁﬁ%:
/[|1opow awes oy Joj L Uanim Buiag
Jaynq xapen LIL| /- saogson auj pog [pue Jublom Buiney | | 2zt
UOLULUIOD B} JON0 Jaqwinu | L1 - dnoib seonio
BuiuiBaq oy Se 19SH0 YIm %l .
sequinu feues Buiubisse Aq | J1{8H S0UANYUI GIIYA ‘
Jaquinu Ague mau anig) | [[TSiePow Swes ayj 1o} A[u (dno1g) anjeN)
M saopsen g yog Nt uBiom ou Buey /_N_
—z dnoib saoiep
z gzl
oquInN Aju3 M3 oL F\\ S|2POjy Jo} >

YUt 3517 U0DA|Og
Sl 2~

X00[g J517 XapoA

B1B(] UOISIBAUO)) 0} BlE(] |BUIBLIO HBAUOD

L1 "Old

ool R
/ JSTTUDIBM
801
o 5T YalIa/, [euibg)
ST UGBA0d BUTBUQ)
901
EJeqd [9POPY [EUBHO

ISPOIN
jeuibuo

[3pon
1ewbug

€0! T

[2poN
feubuo

13poly

[euwibug

<

13Po
teutbuo

US 6,437,779 Bl

Sheet 18 of 24

Aug. 20, 2002

U.S. Patent

G+ (GH) QO —> 81XA 905A
L1XA 50GA
91XA ¥0GA
GLXA £0GA
yIXA 20GA
(SK)QQY ——> E1xA 10SA G
(9ALYEN) AIN
3N (GH) 90GA 90GA
— (GH) GOGA 50GA
M (W) YOSA YOSA
= o (W) £0A £0GA
(W) ZOSA 20GA
gix CLIA (GH) LOSA |_(Z"A°X) L0SA
LLXA LLLA -
0LXA OLIA
6XA 60LA
gxXA 801A
L SOLA (YWY €1 LA ETIA
M”» Mw"» (EW ZLIA (TH) 2L LA ZHIA
(EW) LLIA (W) LLEA LLLA
y+ (1N GIY ——> pxa 201A - (EW) OL LA (ZW) OLIA 0LLA
— ~ (£H) 601LA (ZH) 601A 60 LA
T (EH) 80LA (ZH) 80 LA A wwﬂ»
gxA m . (EH) 90 1A 901LA
vH (EW) SOLA (ZH) SOLA SOLA
exn 901A N (W) YOLA (ZH) YOLA YO1A
XA ST (VW) SOLA"(EW) E0LA" (W) EOLA \ ol
(1) v > oxA OIA " (VW) ZOLA " (SH) ZOLA " (TH) Z0LA AM.H_HvN°_>
a1 meN | (3A13BN) ALN ysian JyFien IySiap AM”V_ _w_> (L1014
IN puz o|ppIN 1e4IS HEN W
8C1-G¢1 IS!7 x8}48) Uouwo) < 0z sdnolp p &—————— [0l 3IS!T X@}I9\ |EBUIELID
gl ©Old

US 6,437,779 Bl

Sheet 19 of 24

Aug. 20, 2002

U.S. Patent

(vH)
£01A

(W)
201A |

L "GXA) ps3e | 4N
(2 *A"X) WYON
(2 *A"x) Lyan

L "pXA) ps3e | 3N

(2 *A"X) WION

(2 *A*X) 143
AN :vx>u gl X8149A

148194 pu3

1Y3iap 3|ppiN

1ygiay 1438

T W "A"X) N4ON

R ITEN
(T ‘eXA) Q] X934op
911N

14!

e |
1M ‘gxA) Ms3e | N
@ aomoN ||/
(Z *A°X) 143N
(L‘9XA) (| X843\
Y3 IoM Pud| (e
EOLA
(LM 'GXA) usde | 4N
(Z *A"X) NJON 1\\\\
(z A% 143 .
AR
(LM PXA) hs3e | N .
(2*K"X) WION 18 1 ‘GXA) sBe | N
(z A) 43N (2 *A*X) WON
(Z'PXA) Q1 X8343p (Z A7) 143N
Y3 1op a|ppIN)
W
) A g(
LR ITE i 6 rn 01 Koo
m A w ﬁm» ”Tk Y3 1ap 34838
(1 Nx>vo_ X931 497 N
an13eN oA13eN
N N
LL] 31SI7] X331 J8A

(CW) EOLA

(TW) CO1A

Jysiap 34e3s

(Z "A"X) KON
et
AN.>.vam_> 17

N,0x>vor>_wwgo>

L (IW) LOLA
L ALW) 101

N

U.S. Patent Aug. 20, 2002 Sheet 20 of 24 US 6,437,779 B1

FIG. 20

Polygon List(M1)

145
DRAW CP(0) /
ADD1—p PG(vx0,vx1,vx4)
PG()

Polygon List(M5)

DRAW 146
PG(vx13,vx14,vx15) /

PG()

Polygon List(M4)

147
DRAW DP(0) f

FIG. 21 Non-drawing Table

f143

O=ADDT1

US 6,437,779 Bl

Sheet 21 of 24

Aug. 20, 2002

(1=L+l+u)xA
[=32510
(1+Y)xA AN 19POW
L +Y] -
. . (L =1+Y)XA
e =950 ” 1=19550
0+Y40 SN 19POW YXA SN ISPOIN
1-f
. -y -y
y - (1-Y)xa
: [=319530 : i Y=39SH0 Y=39s40
z 4 Y=19SH0 z
| l |
waagy—0 LW I°POWN| wagv—o0 LW 1PPON| wggy—0 LN I9POW OXA LN 19POW
c-8) {3 z-a) (X (1-8)

U.S. Patent

JaNg XaH9 A UOWWOY) JO 9SEI|3Y PUB UOIeIdUSK)

d¢¢ Old

19jNng XapSA UOWWOD

Vée Old

al X3

U.S. Patent

Aug. 20, 2002 Sheet 22 of 24

FIG. 23

Example of Vertex List

/[/ZOO

VLIST
STAR

01 vertex_listi(}]

R Ll--%/Zl%ﬂ/ﬂS -----------------
E an VN(FV_C

' 9’)4/215

216\‘\2ffnb 1dx {98, 97,

ZINNERT(0x408fc1d7, Ox3e94clef, Oxbf01b247),

TNORM(0x3f01fa3b, 0x3f327e43, Oxbf018ba8),
: VERT (0x408fcbdb, Ox3ec104ab, 0x3c910610),
: NORM(Ox3ee6e734, 0x3f641d71, 0x3d50e92e),
: VERT (0x409a3fed, Oxbc9d3460, Oxbb9f18c0),
| NORM (0x3f7f633¢c, Oxbd8dbeBc, 0xbb730d7c),

----------- l2---- VAR /A, R
I'C’nR VN' RF(FV/ B) SO
)
16\'\3ffnbldx(l 227
ZIMERT(0x404d6e1 xbf8b71bd),
, NORM(0x3d1 “0x3f44cfce, Oxbf236ece)

NF lagsW{ O, ' -49 983261'

NFlagsW{ 1, 122. 523094)

NFlagsW{ 3, - '26 207253)

S

; Cnk VN _NF (FV MIDDLE .
' 15

Offnbldx(l 2, 221
\VERT(0x404d92d5 Meamo),
ORM (0x3d034@ec, 0. 7, 0x3efba258),

NFlagsW{ 0, 1 149. 985958),
NFlagsW{ 1,1 49, 985447),
NFlagsi{ 2, 1193, 426033),
NFlagsh{ 3, | 149. 948112),

j an VN NF(F CONT|
! 15

lﬁ*gffnb ldx 221
217\\NERT(0x309e38 Masma),
ORM (Ox3cb 97,-0 8. 0x3efb4258),

NFfagsW(132- 1 50. 014042).

VERT (0x3ca2&200 Oxbeb#703a, Oxbf8db2cd),
NORM (0x30e98fb8 0xbf4¥31a3 Oxbf162d8f),

VERT(0xt1f79'q‘a48 Oxbfﬂfd?a Oxbd1a7260),
NORM(0x3d7e5600 Oxbf7§1579, Oxbd6aedc6),

1

1

1

:

1

' NFlagsW(1133,! 1 50. 014545)
L]

\

| NFlagsW(1134, 1 6.573956!),
]

_______ }7_}302-_—_:_-_—_—--————--—--——
CnkEnd ()

END
\\203

VERT (0;40879d8c 0x3fD20228 0x3f81db3f),
NORM(0i3dcdl:0e8 0x3f‘49da46 0x3f1b5a48),

VERT (0140873486 0xbba94240 0x3fa30fab),
NORM ¢ 0)k3df38d19 Oqu3a681e 0x3f7dcfde),

VERT (0x404¢8689 0xbe:04533b OxbfBdb2ed),
NORM (0*3d16l1159 0xbf4f1bbf Oxbf162d8f),

VERT (0){400!;1'897 Oxbf‘l48850 Oxbd1a7260),
NORM(Oi3d940354 0Xbﬁee860 Oxbd6aedch),

VERT (0X404¢|QC83 0xbfi150deb, 0xbd1c5780),
NORM (0x30b30dd3 0xbﬁf8586 0xbd699996),

I -1 R .2"" 4'2:_'_':' b

-

US 6,437,779 Bl

U.S. Patent

Aug. 20, 2002

Sheet 23 of 24

US 6,437,779 Bl

FIG. 24

Procedure of Drawing Library

()

Start

>~

<

Secure common vertex buffer area
of model in the memory

S78

Calculate the moved position of
vertices (Global coordinate) by the
matrix calculation, in the order of

the vertex list of the model.

S80

S84

S82

Native Vertex ?

Complete All
vertices of vetex
list ?

Se3

Normalize the model line
data

S94
CP in Plygon List?

s598
DP in Polygon List?

5102

buffer.
NO
586 S88 Execute weight
Start weight, calculation, and write or
Middle weight, YES—> add the calculated and
End weight vertex ? normal line data in

common_vertex buffer.

To Next Model :

o Next Mode NO S90 <

s92 /‘Q—L___

YES

Write the moved vertex
coordinate and normal line
data in the common vertex

Add +1 to the counter of
the model

S96

Register the model in
non—drawing table.

S100

Draw the non—drawing
model and release the
common vertex buffer area
of the model

Draw that model and release the
common vertex buffer area of
the model

To Next Model

U.S. Patent Aug. 20, 2002 Sheet 24 of 24 US 6,437,779 B1

FIG. 25

One Weight Vertex
C Start)
W

Convert the vertex coordinate and S62
normal line data of the actual vertices of
the integrated shaping model in basic
form, into global coordinate system.

\k

Divide the actual vertices of original
model data into groups with weight and S64
without weight according to the tracing

sequence of the model hierarchy.

W

Convert the vertices influenced by plural
models into native vertices of the most
influenced model.

i

Sort the all vertices for each model S66
which influences the vertices.

S65

Generate the format of the common

vertex buffer for all vertices, assign a s68
consistent serial number to the vertices
as a new vertex [D, and provide them to
the polygon list of each model.
Distribute all vertices to the models S70

which influence them. Convert the
coordinate data and normal line data of
the vertex to the local coordinate system
of the model according to the model
matrix.

Register the vertices in the vertex list of | §72
the distributed model. Referring to the
actual vertices in the vertex list is done
by [Ds or the entry value and offset value
in the common vertex buffer format.

S74
All models ?

(e)

US 6,437,779 B1

1

IMAGE PROCESSING METHOD IMAGE
PROCESSING UNIT AND RECORDING
MEDIUM RECORDING INTEGRATED
SHAPING MODEL DATA AND IMAGE
PROCESSING PROGRAM TO BE USED

THEREOF

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to an image processing
method for processing images in real-time, an image pro-
cessing method for generating an image data structure
suitable for processing images in real-time, and a recording
medium recording the image data structure or image pro-
cessing program concerned.

2. Description of the Related Art

In a home video game machine, moving pictures of
objects of a game are created in real-time synchronizing
with the progress of the game. For the image processing in
such a game machine, it is necessary to move the positions
of the objects in the game responding to the input control
signals of the operator within a short period, a frame period
for example, and to draw images corresponding to the
movement positions in the image memory (frame memory).

In order to express movement more naturally, it is nec-
essary that characters, e.g. living creatures, as the objects of
the game can move joint parts and muscle parts along with
the movement of limbs and necks, and that the joint part
becomes a different shape according to the movement of
other polygons. In other words, in order to express more
natural movement, the part between the upper arm and
shoulder of an individual or the part between the upper arm
and lower arm requires such movement as raising the
muscles of the upper arm and shoulder depending on the
movement of the polygons.

A drawing method for giving natural movement to such
joint parts specifies the vertices to be connected for models
on both sides of the joint, and adds a polygon for the joint
between the vertices. With such a drawing method, however,
the joint part is drawn by standardized polygons, where
movement corresponding to the change of angle cannot be
expressed, and as a result pictures to be generated appear
unnatural.

In order to draw more natural movement, it is proposed to
utilize integrated shaping models called “envelopes” using
three dimensional modelers in the field of image processing
of movies such as CG movies (movies using computer
graphics), which do not require real-time processing. In
these integrated shaping models, objects (characters) are
comprised of polygons and bones which influence the poly-
gons. In other words, an integrated shaping model is com-
prised of polygons, which are the outer surface of the
character and are drawn based on actual movement, and
bones, which influence the positions of the polygons with a
predetermined weight. New positions of bones which influ-
ence the positions of the polygons are computed by a
position conversion matrix determined according to the
operation input of the operator, and the positions of the
vertices of the polygons are determined according to the
degree of influence (weight) from the bones. Complicated
movements can be expressed by polygons by executing
rendering (drawing) on the polygons based on the deter-
mined vertices.

FIG. 1 is a drawing depicting an example of movement of
the above mentioned integrated shaping model in a CG

10

15

20

25

30

35

40

45

50

55

60

65

2

movie. The model shown in FIG. 1 is a model comprised of
an arm part 1 and a hand part 2, and FIG. 1A shows the basic
form of the model. When the arm is bent such that the upper
arm 3 of the arm part 1 becomes more vertical and the lower
arm part 4 of the arm part 1 becomes more horizontal from
the basic form, the state shown in FIG. 1B is expected. In
other words, the joint part connecting the upper arm 3 and
the lower arm part 4 exhibit a natural bent shape and the
inner muscles 3A of the upper arm 3 tense up.

FIG. 2 is an explanatory drawing depicting conventional
image processing using an integrated shaping model in CG
movies. FIG. 3 is a flow chart depicting the image process-
ing procedure thereof. FIG. 2 shows the data structure 620
of the integrated shaping model (envelope). In this example,
a total of seven models, models 1-7, are in the tree type
hierarchical structure shown in FIG. 2. The data structure of
each model is the same as the data 624 of the model 4 and
the data 627 of the model 7.

When a model has polygons to be displayed, the model
has vertices which are the composing elements of the
polygons. Therefore the data structure 624 of the model 4
includes the vertex list 632 and the polygon list 635 of the
polygons comprised of a combination of the vertices. The
vertex list 632 includes position information and normal line
data of each vertex in model local coordinates. Each model
also has a model matrix 631, which is information denoting
relative position with respect to a model in the higher
hierarchy. The model 4, for example, has rotation, shift
(translation) and size (scale) as the relative position infor-
mation with respect to model 3. The model matrix 631
comprised of such position information, can also be matrix
data when the coordinate system of model 3 is converted to
the coordinate system of model 4.

The data structure 624 of the model 4 also has the weight
list 633 including the vertices of other models which model
4 influences, and the weight values, which indicate the
degree of that influence. In the case of the example in FIG.
1, for example, the model of the lower arm 4 influences the
muscle part 3A of the upper arm 3 with a predetermined
weight value. Therefore in the weight list of the model of the
lower arm part 4, the ID of the model of the upper arm 3, the
indexes of the vertices thereof (vertex IDs) and the weight
values are included.

If the model 4 of the model structure in FIG. 2 is the lower
arm part 4 in FIG. 1, and the model 7 is the upper arm part
3, then the positions of vertices of the muscle part 3A in the
upper arm part 3 model change, influenced by the movement
of the upper arm part 3 and the movement of the lower arm
part 4, and the image where the muscle part 3A rises is
drawn. Now the image processing procedure by a three
dimensional modeler, which is generally used for CG
movies, will be explained according to FIG. 3. At first, the
matrix for implementing the movements of all models is
calculated and saved in the data structure of each model
(Step 602). Then referring to the weight list 633, vertex
coordinates and normal line data (vertex data) indicated by
the vertex indexes (vertex IDs) of the model (model 7)
which is influenced by the target model (model 4) are read
from the vertex list 632 of the model 7 (Step 603), the read
vertex data is converted to the vertex data when the vertex
data belongs to the local coordinate system of the model 4
based on the relationship in the basic form, and the con-
verted vertex coordinates and normal line data are multiplied
by the model matrix of the model 4 (Step 604). Also the
vertex coordinates and the normal line data multiplied by the
model matrix are multiplied by the weight value in the
weight list 633, and the values are integrated with the values
in the weight vertex list 634 in the data structure 627 of the
model 7.

US 6,437,779 B1

3

The above procedures 603, 604 and 605 are executed for
the entire weight list (Step 606) and are executed for all
models (Step 607). As a result, coordinate conversion cor-
responding to the movement of characters at actual vertices
of all models, and the position movement according to the
degree of influence from other models are executed. Then
the normal line vectors of the weight vertex list of all models
are normalized so that the normal vectors can be used for
light source processing in rendering, which is executed later
(Step 608). And referring to the vertex positions in the
weight vertex list, the drawing (rendering) of the polygons
in the polygon list is executed (Step 609).

For the above operations, the matrix operation and weight
operation are executed for the vertices of all models, and
rendering processing for the polygons is executed after the
above operations complete. Or, one vertex is focused on and
the matrix operation and weight operation of models which
influence the vertex are executed, then the new vertex
coordinate of the vertex is determined, and final rendering
processing is executed.

This image processing method for CG movies, however,
cannot be applied to high-speed image processing executed
in real-time in a game machine. When the matrix operation
and weight operation are executed for the vertices of all
models, the operations must be executed with reference to
the vertex lists and model matrixes of different models in the
data structure of the model. If such operations are executed
involving a reference procedure using a pointer in the
hierarchical structure of the model data distributed in
memory, the pointer must be changed frequently. There are
shortcomings to executing such operations in a game
machine, since the working efficiency of the cache memory
disposed in the CPU of the game machine is poor. Also when
the matrix operation and the weight operation are executed
for one vertex focusing on the vertex, the buffer area for the
weight operation must be secured for all vertices. If this
operation is executed in a simple-structured game machine,
as opposed to a supercomputer having a large capacity
memory and a high-speed processing capacity, the memory
area required will be enormous, and real-time processing is
difficult, making operation impractical.

SUMMARY OF THE INVENTION

With the foregoing in view, it is an object of the present
invention to provide an image processing method which
allows image processing in real-time utilizing integration
shaping models, an image processing method for generating
image data on integrated shaping models used for the image
processing thereof, and a recording medium recording the
image data and the image processing program concerned.

It is another object of the present invention to provide an
image processing method based on a converter program for
generating image data, which allows image processing in
real-time utilizing integrated shaping models, from three
dimensional model data.

It is still another object of the present invention to provide
an image processing method for transforming joint parts into
a natural shape according to the movement of a character, a
recording medium recording an image processing program
to execute the image processing method and a recording
medium recording data having a structure suitable for the
image processing.

To achieve the above objectives, the present invention is
a computer-readable recording medium recording integrated
shaping model data having a plurality of models linked by
a hierarchical structure where at least a first model has a

10

15

20

25

30

35

40

45

50

55

60

65

4

plurality of vertices constituting polygons, and at least the
position of a first vertex is influenced by positions of a
plurality of models and weight values from these models,
comprising: format data of a common vertex buffer for
saving the data on the plurality of vertices in the plurality of
models for each model; a vertex list which is created for
each one of the models which influence the vertices and has
vertex data specified by a vertex ID in the common vertex
buffer; model matrix data which is created for each one of
the models and sets the model positions of the plurality of
models in basic forms; and a polygon list which is created
for each one of the models having the polygons and has
polygon data where the vertex ID is attribute data, wherein
the vertex data in the vertex list has at least the position data
of the vertex, a weight value from the model where the
vertex list belongs, and vertex ID in the common vertex
buffer corresponding to the vertex.

The above recording medium recording the integrated
shaping model data allows image processing required for
drawing models in real-time in a game machine.

The present invention is also the above mentioned
invention, wherein the first vertex influenced by the plurality
of models have distributed vertex data for the number of the
plurality of models, and the distributed vertex data belongs
to the vertex lists of the models which influence the first
vertex.

The present invention is also the above mentioned
invention, wherein the vertex list is divided into start weight
vertices, for which the vertex operation is executed first
when tracing is executed according to the hierarchical
structure of the models, middle weight vertices, for which
the vertex operation is not executed first or last, and end
weight vertices, for which the vertex operation is executed
last.

The present invention is also the above invention, wherein
the vertex list further has data on native vertices which are
influenced only by the model which this vertex list belongs
to.

The present invention is also the above invention, wherein
the vertex data has coordinate data and normal line data of
the vertices.

The present invention is also the above invention, wherein
the vertex data follows a local coordinate system of the
model of the vertex list which the vertex data belongs to.

The present invention is also the above invention, wherein
the vertex ID in the common vertex buffer has an entry
number of the vertex of each model and the offset value
corresponding to the number of vertices of each model.

The present invention is also the above invention, wherein
the polygon list has a drawing command which instructs the
drawing of the polygon of a predetermined model, or a
non-drawing command which instructs not to draw the
polygon of the model which this polygon list belongs to.

To achieve the above objectives, the present invention is
a computer-readable recording medium recording integrated
shaping model data, having a plurality of models linked by
a hierarchical structure where at least a first model has a
plurality of vertices constituting polygons, and at least a first
vertex position is influenced by positions of a plurality of
models and weight values from these models, comprising:
format data of a common vertex buffer for saving the data on
the plurality of vertices in the plurality of models for each
model; a vertex list which is created for each one of the
models which influence the above vertices and has vertex
data specified by a vertex ID in the common vertex buffer;
and a polygon list which is created for each one of the

US 6,437,779 B1

5

models having the polygons and has the polygon data where
the vertex ID is attribute data.

To achieve the above objectives, the present invention is
an image processing method for converting original model
data into integrated shaping model data having a plurality of
models linked by a hierarchical structure where at least a
first model has a plurality of vertices constituting polygons,
and at least the position of a first vertex is influenced by
positions of a plurality of models and weight values from
these models, wherein the original model data has a plurality
of model data linked by the hierarchical structure, the
original model data comprises an original vertex list having
vertex data of this model, a weight list having vertex data on
vertices which this model influences, and an original poly-
gon list where the vertex ID of the vertex list is attribute
data, and the above image processing method comprises the
steps of: generating format data of a common vertex buffer
to store data on the plurality of vertices in the plurality of
models for each model; generating a vertex list which is
created for each model which influences the vertex, and has
vertex data specified by a vertex ID in the common vertex
buffer; and generating a polygon list which is created for
each model having the polygons where the vertex ID is
attribute data.

According to the above image processing method, con-
version data for an integrated shaping model which allows
image processing in real-time can be generated.

The present invention is also the above image processing
method, wherein the vertex data in the vertex list has at least
the position data of the vertices, weight values from the
model which the vertex list belongs to, and vertex IDs in the
common vertex buffer corresponding to these vertices.

The present invention is also the above image processing
method, wherein the step for generating the vertex list
generates distributed vertices for the number of the plurality
of models for the first vertex which is influenced by the
plurality of models, and distributes the data on the distrib-
uted vertices to the vertex list of the models which influence
the first vertex.

The present invention is also the above image processing
method, wherein the step for generating the vertex list
divides the vertex data into data for start weight vertices, for
which the vertex operation is executed first when tracing is
executed according to the hierarchical structure of the
models, data for middle weight vertices, for which the vertex
operation is not executed first or last, and data for end weight
vertices, for which the vertex operation is executed last, in
the vertex list.

The present invention is also the above image processing
method, where the vertex ID has an entry number of the
vertex in each model, and an offset value corresponding to
the number of vertices of each model.

The present invention is also the above image processing
method, wherein the above image processing method further
has a drawing command generation step where: a dummy
vertex operation is executed for the vertex data in the vertex
list of the model according to the sequence of tracing
following the hierarchical structure of the models; when the
dummy vertex operation for the vertex list of one model
ends, a non-drawing command is generated in the polygon
list of this model if the weight calculation for the vertices of
this model has not ended; and a drawing command for the
non-drawing model is generated in the polygon list of the
target model of the dummy vertex operation if the weight
calculation for the vertices of the non-drawing model ends.

The present invention is also the above image processing
method, wherein the above image processing method further

10

20

25

30

35

40

45

50

55

60

65

6

has a one weight vertex list generation step, where the first
vertex which is influenced by the plurality of models is
converted to a vertex which is influenced only by a model
having the largest degree of influence among the plurality of
models, and the data on the converted vertex is distributed
to the vertex list of this model.

To achieve the above objectives, the present invention is
an image processing method for drawing an integrated
shaping model which has a plurality of models linked by a
hierarchical structure, where at least a first model has a
plurality of vertices constituting polygons and at least the
position of a first vertex is influenced by positions of a
plurality of models and weight values from these models,
wherein the data of the integrated shaping model comprises:
format data of a common vertex buffer which stores data on
the plurality of vertices in the plurality of models for each
model; a vertex list which is created for each model which
influences the vertices and has vertex data specified by a
vertex ID in the common vertex buffer; and a polygon list
which is created for each model having the polygons and
includes polygon data where the vertex ID is attribute data,
the image processing method comprising steps of: generat-
ing the common vertex buffer corresponding to the plurality
of models in the sequence of tracing of the hierarchical
structure according to the format data; generating model
matrix data where the positions of the models are set based
on the game progress data; generating common vertex data
by executing the matrix calculation for generating vertex
data after movement according to the model matrix data and
weight calculation for integrating the weight values from the
models to the vertex data after movement, for the vertex data
of the vertex list of the models, and by storing or adding this
operated vertex data to areas according to the vertex IDs in
the common vertex buffer; and rendering the polygons
according to the common vertex data.

According to the above image processing method, char-
acters of the integrated shaping models can be drawn in
real-time.

The present invention is also the above image processing
method, wherein the vertex data in the vertex list has at least
the position data of the vertex, weight values from the model
which the vertex list belongs to, and the vertex IDs in the
common vertex buffer corresponding to these vertices, and
in the step of generating the common vertex data, the
position data is multiplied by the model matrix for the above
matrix calculation, and the above operated position data is
multiplied by the weight value for the above weight calcu-
lation.

The present invention is also the above image processing
method, wherein the vertex list is divided into start weight
vertices, for which the vertex operation is executed first
when tracing is executed according to the hierarchical
structure of the models, middle weight vertices, for which
the vertex operation is not executed first or last, and end
weight vertices, for which the vertex operation is executed
last, and in the step of generating the common vertex data,
the operated vertex data for the start weight vertices is stored
in areas corresponding to the vertex IDs in the common
vertex buffer, and the operated vertex data for the middle
weight vertices and end weight vertices are added to the
vertex data in areas corresponding to the vertex IDs in the
common vertex buffer.

The present invention is also the above image processing
method, wherein the above polygon list has a drawing
command instructing to draw the polygons of a predeter-
mined model or a non-drawing command instructing not to

US 6,437,779 B1

7

draw the polygons of the model which this polygon list
belongs to, and the above rendering step refers to the
polygon list of the model each time the above common
vertex data generation step of each model ends, and executes
the above rendering according to the drawing command.

The present invention is also the above image processing
method, further comprising a step for releasing the area of
the common vertex buffer corresponding to the model for
which the above rendering is executed.

The present invention is also the above image processing
method, wherein the above model data also has a vertex list
for one weight where the first vertex which influenced by the
plurality of models is converted to a vertex which is influ-
enced only by the model which degree of influence is largest
among the plurality of models, and data of the vertex is
distributed in the vertex list of this model, and the above
image processing method generates the common vertex data
for a predetermined model according to the vertex list for
one weight.

To achieve the above objectives, the present invention
provides a recording medium recording a program for a
computer to execute the above mentioned image processing
method. With this recording medium, characters of an
integrated shaping model can be drawn in real-time in game
machines.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1A and 1B are drawings depicting an example of
movement of an integrated shaping model in CG movies;

FIG. 2 is a drawing depicting conventional image pro-
cessing utilizing an integrated shaping model in CG movies;

FIG. 3 is a flow chart depicting the image processing
procedure in FIG. 2;

FIG. 4 is a drawing depicting an example of an integrated
shaping model which is generated utilizing the three dimen-
sional modeler in the present embodiment;

FIG. 5 is an example of the data configuration of the
integrated shaping model in FIG. 4;

FIG. 6 is a drawing depicting the degree of influence
(weight value) from the model to each vertex set by a
designer;

FIG. 7 is a drawing depicting an example of movement of
an integrated shaping model (envelope);

FIGS. 8A and 8B are drawings depicting the weight
calculation method in an integrated shaping model;

FIG. 9 is a flow chart depicting the procedure of model
movement calculation and the weight calculation of vertices
in an integrated shaping model;

FIG. 10 is a drawing depicting the relationship between
the original data of an integrated shaping model and the
conversion data for the drawing library in the present
embodiment;

FIG. 11 is a drawing depicting the relationship between
the configuration in the recording medium for games and
game machine hardware;

FIG. 12 is a flow chart depicting the processes of creating
conversion data from the integrated shaping model data by
a three dimensional modeler;

FIG. 13 is a flow chart in a game;

FIG. 14 is a flow chart depicting a procedure of a
converter;

FIG. 15 is a flow chart depicting a procedure of a
converter;

FIG. 16 is a flow chart depicting a procedure of the
detailed distribution of actual vertices to models and vertex
list generation;

10

15

20

25

30

35

40

45

50

55

60

65

8

FIG. 17 is a drawing depicting a procedure to convert the
original data to the conversion data;

FIG. 18 is a drawing depicting the vertex list of the
original data and the common vertex list when the present
invention is applied to a specific model example;

FIG. 19 is a drawing depicting a vertex list when the
present invention is applied to a specific model example;

FIG. 20 is a drawing depicting an example of a polygon
list;

FIG. 21 is a drawing depicting an example of a non-
drawing table;

FIGS. 22A and 22B are drawings depicting the opening
and release of a common vertex buffer;

FIG. 23 is a drawing depicting another example of a
vertex list;

FIG. 24 is a flow chart depicting a procedure of the
drawing library; and

FIG. 25 is a flow chart depicting a procedure of the
converter to obtain the one weight vertex list from the data
of a multi-weight integrated shaping model

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

Embodiments of the present invention will now be
described with reference to the accompanying drawings.
These embodiments, however, will not restrict the technical
scope of the present invention.

FIG. 4 is a drawing depicting an example of an integrated
shaping model which is generated utilizing a three dimen-
sional modeler according to the present invention. The
integrated shaping model in FIG. 4 is an example to imple-
ment the movement of the arm shown in FIG. 1. The model
M1 has a polygon which is actually displayed, and this
polygon has a total of 13 actual vertices, V101—V113. The
model M1 is, for example, an envelope enclosing the upper
arm 3 and the lower arm part 4 in FIG. 1. The position of the
model M1 has a 100% influence on the vertices V101 and
V107, for example. Therefore the model M1 is a bone model
having weight values for actual vertices.

The models M2, M3 and M4 do not have polygons,
therefore they do not have actual vertices. The movement of
the models M2, M3 and M4, however, influence a part of the
vertices of model M1 according to predetermined weight
values. In other words, the models M2, M3 and M4 are bone
models having weight values for actual vertices. The model
5 has a polygon corresponding to the hand part 2 in FIG. 1,
and the six actual vertices, V501-V506, constituting the
polygon, are influenced not by other models but are 100%
influenced by the position of the model M5 itself. Therefore
the model M5 is a bone model which will influence its own
vertices V501-V506.

The integrated shaping model shown in FIG. 4 is also
called an “envelope”, which is designed by the game
designer by utilizing a three dimensional modeler. The
designer designs such that each vertex is influenced by one
or more models at a predetermined ratio. By moving the
position of each model along with the execution of the game
program, the positions of the vertices are moved according
to the degree of influence (weight values) defined as initial
values, and the desired movement of characters are imple-
mented.

FIG. 5 is a data configuration example of the integrated
shaping model in FIG. 4. The models M2, M3 and M5 are
linked under the model M1, and the model M4 is also linked
under the model M1. This kind of tree structure of data is an

US 6,437,779 B1

9

example of the hierarchical structure of models, and the
models constituting an integrated shaping model can be
linked within a hierarchical structure suitable for the respec-
tive program. In the case of the tree structure shown in FIG.
5, model data is generally traced in the sequence of models
M1, M2, M3, MS and M4. Such a sequence of tracing can
be any sequence which is suitable for the program.

In the data configuration example in FIG. 5, each model
has a model matrix which indicates how much the coordi-
nate system of the model should move with respect to the
coordinate system of the model in the higher hierarchy. In
other words, the model matrix is data to set the position of
the model. The coordinate system will be described later, but
in this example, each model has the respective local coor-
dinate system. A global coordinate system, which is com-
mon for all models, also exists which is separate from the
local coordinate system. To define a position of the model
M2 after movement, for example, the model matrix, which
includes rotation, translation and scale, is used as the posi-
tional relationship of the local coordinate system of model
M2 with respect to the local coordinate system of model M1.
Therefore by executing the matrix operation which multi-
plies the model matrix with the positional coordinate data
and normal line data of the local coordinate system of the
model M2, the positional coordinate data and normal line
data of the local coordinate system of the model M2 are
converted to the positional coordinate data and normal line
data of the local coordinate system of the model M1. If the
model matrix of the model M1 is multiplied with the
positional coordinate data and normal line data of the model
M1, the positional coordinate data and normal line data in
the global coordinate system can be determined.

In this way a character comprised of a plurality of models
can have movement by the model matrix between the
models. Normally such a model matrix, which indicates the
movement of a character, is created by the geometry func-
tion in the game program. The model matrix may indicate
the positional relationship between the global coordinate
system and the local coordinate system of the model.

FIG. 6 is a drawing depicting the degree of influence
(weight value) of a model to each vertex which is set by a
designer. In the example shown in FIG. 6, the vertices V101
and V107 of the model M1 are 100% influenced by the
movement of the model M1. Therefore the positions of the
vertices V101 and V107 move while maintaining the same
positional relationship along with the movement of the bone
part of the model M1. The vertices V102 and V103 of the
model M1 are influenced by the models M2, M3 and M4
according to the ratio of the weight values shown in FIG. 6.
Therefore these vertices are influenced for the amount of
weight values shown in FIG. 6 when the models M2, M3 and
M4 move. If the model M4 moves upward for a long
distance, for example, these vertices are influenced for 40%
of the distance moved. If the vertices V102 and V103
correspond to the muscle part 3A of the upper arm part, for
example, the muscle part 3A of the upper arm part can be
risen appropriately by moving the model 4 for the appro-
priate distance.

The vertices V104, V105, and V108-V111 of the model
M1 are influenced by the models M2 and M3 according to
the ratio of weight values shown in FIG. 6. The vertices
V106 and V112 are influenced only by the model M3.
Therefore if the model M3 moves, then the vertices V106
and V112 move while maintaining the same positional
relationship. The vertex V113 is influenced by the model M4
with a 100% weight value.

The model MS is a part connected to the model M1, and
corresponds to the hand part 2 in the example shown in FIG.

10

15

20

25

30

35

40

45

50

55

60

65

10

1. The hand part 2 does not have to change its shape
depending on the position of the arm, and is 100% influ-
enced by the bone part of the model M5.

The weight value of each vertex shown in FIG. 6 is set as
an initial value by the designer who designed the character.
The designer can freely control the position of each vertex
by setting such weight values and moving the models by the
model matrix during the progress of the game. If the
positions of the vertices are determined, a polygon defined
by a plurality of vertices can be rendered in the image
memory by the drawing section (rendering section).

FIG. 7 is a drawing depicting an example of the move-
ment of an integrated shaping model (envelope). This
example shows an integrated shaping model when the
integrated shaping model in the basic form shown in FIG. 4
moves, as shown in FIG. 1B. In order to implement the
movement shown in FIG. 1B, the models M1-M4 consti-
tuting the integrated shaping mode move as follows. The
models M1 and M2 rotate in the vertical direction and the
model M3 rotates in the horizontal direction. Along with
this, the model M5 moves so as to match with the tip
position of the model M3. The model M4 is a model used
mainly for expressing the rising 3A of the muscle on the
upper arm, rotating vertically upward, as shown in FIG. 7.

As a result, the vertices V102 and V103 move such that
the muscle rises influenced by the movement of the model
M4, and the vertex V113 moves interlocking with the
movement of the model M4. The vertices V101 and V107
simply move interlocking with the movement of the model
M1 respectively, and the vertices V104, V105 and
V108-V111 move to respective positions influenced by the
movement of the models M2 and M3. Therefore the polygon
formed by the vertices V104, V109 and V110 changes to a
natural elbow joint shape when an arm is bent. The vertex
V112 moves interlocking with the movement of the model
M3. Each vertex of the model M5 simply moves according
to the movement of the model M35 respectively.

When polygons filling the space between each vertex are
rendered with respect to the positions of the vertices after
movement, the upper arm 3 is lowered in the vertical
direction, the lower arm 4 is bent to be in a more horizontal
direction, the muscle 3A of the upper arm rises, and the hand
part 2 is connected at the tip of the arm, as shown in FIG.
1B. The models M2, M3 and M4 which do not have
polygons have no actual vertices, and these models are not
displayed in the images.

FIG. 8 is a drawing depicting the weight calculation
method in an integrated shaping model. FIG. 8 shows the
case when the integrated shaping model in the basic form
state in FIG. 4 becomes the state after the movement in FIG.
7, particularly showing the relationship between the vertices
V102 and V103 and the models M2, M3 and M4 which
influence the vertices V102 and V103. FIG. 9 is a flow chart
depicting the procedure of the model movement calculation
(matrix calculation) and the weight calculation of vertices in
an integrated shaping model.

FIG. 8A shows the models M2, M3 and M4 in the basic
form state. As mentioned above, the models M2, M3 and M4
have the local coordinate system CDM2, CDM3 and CDM4
respectively. The global coordinate system CDGB, which is
common to all the models, is also set. In the integrated
shaping model shown in FIG. 4, a designer has set the
vertices V102 and V103 so as to be influenced (with weight
value) by the models M2, M3 and M4. In other words, the
weight values shown in FIG. 6 are set as the initial values in
advance. To execute weight calculation, the vertices V102

US 6,437,779 B1

11

and V103 are divided respectively into three vertices
(distributed vertices) belonging to the models M2, M3 and
M4 which influence the vertices respectively, and are dis-
tributed to the respective corresponding models (S1 in FIG.
9). For example, the vertex V102 is divided into distributed
vertices V102 (M2), V102 (M3) and V102 (M4), which are
distributed to the models M2, M3 and M4 which influence
the distributed vertices respectively. The vertex V103 is also
divided into three distributed vertices which are distributed
to the models which influence the distributed vertices
respectively.

As a result, the vertices V102 (M2) and V103 (M2)
belong to the model M2. In the same way, the vertices V102
(M3) and V103 (M3) belong to the model M3, and V102
(M4) and V103 (M4) belong to the model 4. The position
coordinates of the vertices belonging to each model in the
basic form state are converted to the local coordinate system
of each model (S2 in FIG. 9). For example, the absolute
coordinate of the vertex 102 (M2) and the vertex V103 (M2)
is converted to the local coordinate system CDM?2 of the
model M2 according to the model matrix of the model M2.
For the other vertices as well, the absolute coordinate is
converted to the local coordinate system of the model which
the vertices belong to. As a result, each vertex moves
together with the model which the vertex belongs to.

FIG. 8B shows a state when each model M2, M3 and M4
moves as shown in FIG. 7 respectively. The movement of
each model is controlled by setting the respective model
matrix (S3 in FIG. 9). For example, the local coordinate
system CDM2 of the model M2 moves to a position accord-
ing to the rotation, translation and scale of the model matrix
of the model M2 with respect to the local coordinate system
of the model M1, which is not illustrated. The vertices V102
(M2) and V103 (M2) belonging to the model M2 shift
according to the movement of the model M2, while main-
taining the positions with respect to the model M2 in the
basic form state. In other words, the positions of the vertices
V102 (M2) and V103 (M2) do not move in the local
coordinate system CDM?2 of the model M2. Therefore the
positions of the vertices V102 (M2) and V103 (M2) which
move along with the movement of the model M2 can also be
determined by executing the matrix calculation utilizing the
model matrix of the model M2 (S4 in FIG. 9).

The vertices V102 (M3) and V103 (M3) belonging to the
model M3 and the vertices V102 (M4) and V103 (M4)
belonging to the model M4 also move along with the
movement of the respective models, and the positions after
the movement can be determined by executing the matrix
calculation utilizing the model matrix of the respective
models.

When the positions in the global coordinate system are
determined for the vertices distributed to each model, for
example, the weight operation according to the weight
values (degree of influence) which each model has on the
vertices is executed (S5 in FIG. 9). According to the weight
values in FIG. 6, for example, the weight values from the
models M2, M3 and M4 are 30%, 30% and 40% respectively
for both vertices. Given this, consider vertex V102 for
example, where a new position coordinate of the vertex
V102 according to the degree of influence (weight value)
from each model is determined by multiplying the vertex
coordinate value of the vertex V102 (M2) by 0.3, multiply-
ing the vertex coordinate value of the vertex V102 (M3) by
0.3, multiplying the vertex coordinate value of the vertex
V102 (M4) by 0.4, and integrating (adding) these values. In
other words, the vertex V102 indicated by the double circles
in FIG. 8 (B) is the position of the actual vertex determined

10

15

20

25

30

35

40

45

50

55

60

65

12

from the three distributed vertices V102 (M2), V102 (M3)
and V102 (M4) using 30%, 30% and 40% weight values
respectively. If the X coordinate values of the three distrib-
uted vertices V102 (M2), V102 (M3) and V102 (M4) in the
global coordinate system are X2, X3 and X4, then the X
coordinate value X102 of the actual vertex V102 shown by
the double circle is given by

X102=0.3*X2+0.3*X3+0.4*X4

(* means multiply) This is the weight calculation.

Utilizing the coordinate values and normal line data of the
vertices indicated by the double circles after weight
calculation, which are determined as above, the rendering of
polygons comprised of a plurality of vertices is executed.
For example, the color data of pixels in a polygon connected
with a plurality of vertices is determined by determining the
inner ratio of the pixel coordinates with respect to the vertex
coordinates by a raster scan method and executing interpo-
lation using the inner ratio based on the vertex data and
texture data. In addition to the above vertex coordinates,
normally data on the normal vectors of the vertex is also
used. The normal line data at the vertex indicated by the
double circles is determined by the weight operation, the
same as above, and the calculation of distributed light with
respect to the light source is executed using such normal line
data. These rendering methods, however, are not the subject
of the present invention, where a general rendering method
is used.

The above is the method which implements the movement
of a character by the integrated shaping model (envelope)
utilizing a three dimensional modeler. As explained above,
when an integrated shaping model is used, each model must
have data on the influential vertices in addition to the actual
vertex data of the respective model, and the step to deter-
mine the position of each model by operation using the
model matrix, the step to determine the positions of the
influential vertices using the model matrix, the step to
determine the new position and normal line data considering
the degree of influence of these vertices by the weight
operation, and the step to execute the rendering of the
polygons of each model using the vertex, data determined
above are required. Processing for the integrated shaping
model which involves these steps must be executed in
real-time using such hardware as a game machine, which has
only simple operation functions and a small memory
capacity, unlike a supercomputer.

The present invention uses conversion data, which is
obtained by executing a part of the above data processing in
advance on the original model data of the integrated shaping
model. This conversion data has a format suitable for
operation and processing in real-time by the game machine,
and such conversion data is recorded in a recording medium
for a game machine, e.g. a CD-ROM or game cassette, as
character data.

FIG. 10 is a drawing depicting the relationship between
the original data on an integrated shaping model and the
conversion data for the drawing library in the present
embodiment. According to the present embodiment, the
original data 100 on the integrated shaping model generated
by a three dimensional modeler used for a CG movie is
converted to the conversion data 110 for the drawing library
by a new converter program to be provided by the present
invention. This conversion data 110 does not include data
which dynamically changes during the progress of a game,
and has a data format optimized for operating the dynamic
movement of characters during the progress of a game by the
drawing library (drawing processing program) in a recording

US 6,437,779 B1

13

medium recording a game program to be executed by the
game machine. Therefore the conversion data 110 is gener-
ated by converting the original data according to the con-
verter program and is stored in a recording medium for
games, a CD-ROM for example.

FIG. 11 is a drawing depicting the relationship between
the configuration in the recording medium for games (e.g.
CD-ROM) and game machine hardware. As FIG. 11 shows,
the recording medium 10 is for storing a game program 12
which controls the story of the game and movement of the
objects, including characters, synchronizing them with the
progress of the game, model conversion data 110 which the
converter generated by converting original data, and a
drawing library (a type of program) 14 for executing image
processing. Such a recording medium 10 for games is
installed in a game machine hardware 20, and is read when
necessary, then the game program is executed, and the
drawing library 12 is executed using the model conversion
data, and as a result, images in a short time period, at each
frame for example, are generated.

FIG. 11 shows a configuration of a game machine hard-
ware 20. CPU 22, for executing arithmetic processing, and
system memory (RAM) 24, which temporarily reads the
program of the recording medium 10 for games and the
model conversion data and is used as a buffer memory of
arithmetic processing, are connected via buses in the game
machine hardware 20. Also a rendering processor 26, which
executes rendering according to the drawing commands
generated by the drawing library, a frame memory 28, where
the image signals drawn by the processor 26 are recorded, an
audio processor 30, for generating audio data, and an audio
memory 32, for recording the generated audio data, are
connected via a bus arbiter 38. The image data recorded in
the frame memory 28 and the audio data recorded in the
audio memory 22 are displayed in or output from the display
device 34, such as a TV monitor. The bus arbiter 38 in the
game machine 20 also has the function of an interface,
where the control pad 42 for game inputs is connected as the
input means, and an external communication line is con-
nected via a modem 40. The bus arbiter 38 is also connected
to a boot ROM 36, so that a boot operation at power ON is
executed by executing the data in the boot ROM. The game
machine 20 also connects the recording medium 10 for
games, e.g. CD-ROM or a game cartridge, via the bus arbiter
38, so as to use the recording medium 10 as an external
recording device.

The model conversion data 110 recorded in the recording
medium 10 for games has been converted to a data format
which decreases the image processing load on the drawing
library 14. Because of this data format, which is described
later, the model conversion data 110 has an optimum data
structure for the drawing library 14, therefore image pro-
cessing for the integrated shaping models of characters
which move during the progress of a game can be executed
in real-time.

FIG. 12 is a flow chart depicting the processes of creating
conversion data from the integrated shaping model data by
a three dimensional modeler. The game is normally created
by a planner who creates the game story, a designer who
designs game objects, such as characters, for the game, and
a programmer who writes the game program. The three
dimensional modeler is used by the designer to provide
characters which move as naturally as possible, and gener-
ates original data of the integrated shaping model called an
envelope (S10). In this integrated shaping model, as
explained above, each model has a model matrix, vertex data
and weight list, as shown in the prior art in FIG. 2. The

10

15

20

25

30

35

40

45

50

55

60

65

14

model matrix is matrix data on rotation, translation and scale
with respect to a model in the higher hierarchy in the
hierarchical structure (tree structure) of the models. The
vertex data is data corresponding to actual vertices, and
includes at least the position coordinate data and normal line
data on the normal line vectors of the vertices. The vertex
data also includes a value indicating opacity and texture
coordinates which correspond to texture data, for example.
The weight list has at least the IDs of the actual vertices
which the model influences (model ID and vertex IDs of
vertices belonging to the model) and weight values. FIG. 6
shows the data when the weight list is developed.

Then the conversion data corresponding to the data format
for the drawing library is generated from the original data of
the integrated shaping model by the converter program
(S12). In the conversion data, about which details are
explained later, actual vertices are divided into four groups,
that is, native vertices, which do not have weight, and start
weight vertices, middle weight vertices, and end weight
vertices, which require weight calculation. The start weight
vertex is a vertex for which the weight value is multiplied
first in the weight calculation, the middle weight vertex is a
vertex for which the weight value is multiplied next in the
weight calculation, and the end weight vertex is a vertex for
which the weight value is multiplied last in the weight
calculation. The sequence of weight calculation is normally
determined according to the tracing sequence of the hierar-
chical structure (tree structure) of the models. The vertices
divided into each group are sorted for each model where
respective vertices belong.

Then the format of the common vertex buffer comprised
of native vertices and start weight vertices, which denote
actual vertices without overlapping, is generated, and con-
sistent vertex IDs are assigned to the actual vertices arranged
in the common vertex buffer regardless the attribute of the
model. The list of the actual vertices comprised of native
vertices and the start weight vertices in the common vertex
buffer is a set of the actual vertices for each model where the
actual vertices belong. The common vertex list for each
model is sorted for each model which influences those actual
vertices, and is sorted in the sequence for each model. The
consistent vertex IDs are assigned to the actual vertex list for
each model arranged in the common vertex buffer, so as to
simplify the reference procedure in the weight calculation at
a later step. The common vertex buffer generated in this
manner has a simple data structure equivalent to the con-
ventional actual vertex list of a model which does not
involve weight calculation.

In addition to the format of the common vertex buffer, the
vertices divided into four groups are distributed to the
models which influence these vertices. And a vertex list
comprised of the distributed vertices is generated for each
model. In this vertex list, the vertices are sorted into the
above four groups, native, start weight, middle weight and
end weight, where the vertices are saved. The vertex data in
the vertex list includes the vertex coordinate data based on
the local coordinates in the model, normal line data and
weight data, which refers to the vertex IDs in the common
vertex buffer of the influential actual vertices if necessary. In
other words, the above weight data is included in the vertex
data belonging to the start weight, middle weight and end
weight vertices, and is not included in the vertex data belong
to the native vertices.

In this vertex list for each model, the native vertices, on
which only the model influences (one weight), and the start
weight vertices, middle weight vertices and end weight
vertices, on which the model and other models influence

US 6,437,779 B1

15

(multi-weight), are unitarily arranged. The drawing library
executes image processing in real-time using the vertex list
and the common vertex buffer.

The model conversion data also includes the polygon list.
This polygon list has a plurality of vertex data constituting
the polygon. The vertex ID assigned to the actual vertices in
the common vertex buffer is used as attribute data in the
vertex data of the polygon list. Preferably the polygon list
also includes a drawing command to indicate whether ren-
dering (drawing) of the model is executed. This drawing
command is generated by the converter and is referred to by
the drawing library.

As described above, the conversion data 110 generated by
the converter has the format of the common vertex buffer
indicating the list of the actual vertices, a vertex list of the
vertices distributed to each model, and the polygon list of
each model. As FIG. 9 shows, the conversion procedure by
the converter includes the distribution of actual vertices to
the model (S1) and conversions to the local coordinate
system in the model (S2), then the movement calculation
based on the model matrix (matrix operation) which is
executed by the drawing library (83, S4), and the generation
of optimum conversion data for the weight operation using
the weight values (S5), are executed. This conversion data
will be described again later using the examples in FIG. 4
and FIG. 7.

Along with the generation of the conversion data 110, the
game program is created by a programmer (S14), as men-
tioned above. And as shown in FIG. 11, the game program
12, the model conversion data 110 and the drawing library
14 are recorded in the recording medium 10 for games
(S16).

FIG. 13 is a flowchart of a game. To play a game, a
recording medium 10 for games is set to the game machine
(S20). The game machine executes the game according to
the game program in the recording medium, and generates
a model matrix for moving the models which constitute a
character (S22). The model matrix for movement is a matrix
comprised of such parameters as rotation, translation and
scale with respect to the model in the higher hierarchy, as
mentioned above, and new coordinates after movement are
determined by multiplying the model or the vertex coordi-
nates of the polygon by the model matrix.

Then the game machine executes the drawing library
(S24). The model conversion data 110 has a format of the
common vertex buffer where consistent IDs are assigned for
the actual vertices of all models, a vertex list of vertices
distributed for each model, and a polygon list for each
model. The vertex list for each model comprised of vertices
which are not influenced by other models (native vertices)
and vertices which are influenced by other models (start
weight, middle weight, and end weight), as described later,
where the vertices which are influenced by other models, are
sorted for each one of the other influential models. The
vertex list for each model uses the vertex IDs of other
influential vertices according to the consistent vertex IDs in
the common vertex buffer. The polygon list for each model
includes vertex data, where the vertex IDs of the polygons
constituting the model are attribute data, and includes a
drawing command for the model for which the weight
calculation has ended, and an non-drawing command for the
model for which the weight calculation has not ended. The
common vertex buffer is developed in the system memory
(RAM) in the game machine at the stage when the drawing
library executes image processing.

In the procedure for the drawing library, new coordinate
data of vertices after movement is determined by multiply-

10

15

20

25

30

35

40

45

50

55

60

65

16

ing the coordinate data of the vertices of each model by the
matrix for movement created by the game program. This
step corresponds to Step S4 in FIG. 9. Then based on the
vertex data, the weight calculation is executed according to
the tracing sequence of the hierarchical structure of the
model and in the sequence of the vertex list in the model, and
the calculation result is written or integrated (added) to the
area in the common vertex buffer corresponding to the
influential vertices. This step corresponds to Step S5 in FIG.
9. Then the drawing library executes the drawing (rendering)
of the polygons in the model referring to the vertex coor-
dinates and normal line data stored in the common vertex
buffer according to the drawing command in the polygon list
in each model, and records the image data, including color
data of the pixels in the polygons, in the frame buffer 28.

The images are displayed on the display device 34 accord-
ing to the image data drawn in the frame buffer 26 (S26). By
displaying these drawn images for each frame, images,
including characters which move responding to the control
input signals of the operator, can be displayed. Since a
model based on the integrated shaping model generated by
a three dimensional modeler is used, the joint part of
characters move naturally, and such movement as the rise of
a muscle of a character can be expressed. The above Steps
S20-S26 are repeated for each frame period.

FIG. 14 and FIG. 15 are a flow chart depicting procedures
of the converter. Unlike the drawing command stored in the
recording medium for games, the converter of the present
embodiment is not required to process data in real-time. The
steps S30, S32 and S33 of this flow chart are the stages to
create the format of the common vertex buffer from the
original data of the model, and to create the vertex list for
each model. The steps S36-S60 of this flow chart are
simulation operation stages of image processing which the
drawing library executes, and executing this simulation
operation makes it possible to detect the timing to execute
the drawing (rendering) of each model when the hierarchical
structure of the models is traced, and to insert the non-
drawing command and drawing command in the polygon list
of the model. The format of the common vertex buffer and
the vertex list created in this manner have a data format
suitable for the drawing library to execute image processing,
and the non-drawing command or the polygon list with a
drawing command, which are generated by the simulation
operation, decreases the burden of the drawing library to
manage the drawing timing of each model.

The converter program having the processing procedure
shown in FIG. 14 is executed by a general purpose computer
which has faster processing functions and larger capacity
memory than a game machine. The converter program is
recorded in an external recording medium, such as a hard
disk, of this general purpose computer, by which the pro-
cessing procedure is executed for the original data and the
conversion data is generated.

In order to execute the movement calculation (matrix
calculation) and weight calculation for drawing of the inte-
grated shaping model, as explained in FIG. 9, it is necessary
to distribute the actual vertices to the influential models (S1),
and to convert the position coordinate data and normal line
data of the vertices into the local coordinate system of the
distribution destination model (S2). In addition to the above
two procedures S1 and S2, the converter of the present
embodiment generates the actual vertices for the number of
the distribution destination models, and divides these actual
vertices into four groups, native vertices, which depend on
the position of a single model (vertices which have no
weight) start weight vertices, for which weight calculation

US 6,437,779 B1

17

must be executed first when the model hierarchy is traced,
middle weight vertices, for which weight calculation must
be executed second or later, and end weight vertices, for
which weight calculation must be executed last (the start
weight vertices, middle weight vertices and end weight
vertices are vertices which are influenced by a plurality of
models (vertices which have weight)) (S30).

Since the native vertices and start vertices, of the four
groups of vertices, correspond to the actual vertices, the
converter rearranges the vertices of these vertex groups for
each model to which the vertices belong, and creates the
format of the common vertex buffer (S32). To these vertices
which are arranged in the common vertex buffer, consistent
serial numbers are assigned as new vertex IDs. A number in
various formats can be used for a new vertex ID. For
example, an entry number of the vertex in each model and
an offset value corresponding to the number of vertices in
the model are used so that the format data of the common
vertex buffer can be created, and also the number can be
used for the vertex ID.

The converter also rearranges the four groups of vertices
distributed to the models for each one of the models which
influences these vertices, and creates the vertex list for each
model (S34).

The above memory processings S30, S32 and S34 will be
explained below using the model examples in FIG. 4 and
FIG. 6. FIG. 16 is a flow chart depicting the procedure of the
detailed distribution of actual vertices to models and the
vertex list generation. FIG. 17 is a drawing depicting the
procedure to convert original data to conversion data. FIG.
18 is a drawing depicting a vertex list of the original data and
a common vertex list when the present embodiment is
applied to a specific model example, and FIG. 19 is a
drawing depicting a vertex list when the present embodi-
ment is applied to a specific model example. The procedure
shown in FIG. 16 and FIG. 17 will now be described with
reference to FIG. 18 and FIG. 19.

As the left side of FIG. 17 or the left side of FIG. 18
shows, the data on the models M1 and M5 of the original
data includes the vertex list (107 in FIG. 17). This model
data of the original data is data generated by a three
dimensional modeler, where each model has the model
matrix (109 in FIG. 17), a model having a polygon has the
vertex list (107 in FIG. 17), and the polygon list (106 in FIG.
17), and a model which influences the vertices has the
weight list (108 in FIG. 17). The original vertex lists at the
left side of FIG. 18 correspond to the vertex lists of the
models M1 and M5, which are the above mentioned models
having polygons. Therefore the vertices shown here are
actual vertices and the vertex list includes at least the
position coordinate data and normal line data on the vertices.

At first, the converter determines the global coordinates of
the position coordinates and normal line data of the actual
vertices of the integrated shaping model in basic form (S62).
This operation is executed, for example, by multiplying the
actual vertex data of respective models by the model matrix
of the models M1 and M5. As a result, the data on the actual
vertices V101-V113 and V501-V506 shown in FIG. 4 are
converted to the global coordinate system.

Then the actual vertices of the original model data are
divided into four groups based on the weight according to
the tracing sequence of the model hierarchy (S62, see Steps
121-124 in FIG. 17). In FIG. 18, for example, the tracing
sequence in the model hierarchy is the models M1, M2, M3,
MS and M4. The vertex V101 of the model M1 is a vertex
which depends 100% on the position of the model M1 and
belongs to the native vertex group which has no weight and

10

15

20

25

30

35

40

45

50

55

60

65

18

does not require the weight calculation. The vertex V102 of
the model M1 is indicated in the weight table in FIG. 6, and
is influenced by the models M2, M3 and M4 for 30%, 30%
and 40% respectively, as shown in FIG. 8, so the vertex
V102 (M2), which is influenced by the model M2, is sorted
to the start weight group, the vertex V102 (M3), which is
influenced by the model M3, is sorted to the middle weight
group, and the vertex V102 (M4), which is influenced by the
model M4, is sorted to the end weight group.

For the vertex V103 of the model M1 as well, the vertex
V103 (M2), which is influenced by the model M2, is sorted
to the start weight group, the vertex V103 (M3), which is
influenced by the model M3, is sorted to the middle weight
group, and the vertex V103 (M4), which is influenced by the
model M4, is sorted to the end weight group. For the vertex
V104 of the model M1, the vertex V104 (M2), which is
influenced by the model M2, is sorted to the start weight
group, and the vertex V104 (M3), which is influenced by the
model M3, is sorted to the end weight group. As FIG. 18
shows, the vertices V105, and V108—V112 are also sorted to
the start weight group and the end weight group.

As FIG. 18 shows, the vertex V106 of the model M1,
which is influenced 100% by the model M3, is sorted to the
native group, the vertex V107 is influenced 100% by the
model M1 and the vertex V113 is influenced 100% by the
model M4, therefore the vertex V107 (M1) and the vertex
V113 (M4) are sorted to the native group.

The actual vertices V501-V506 of the model M5 all
depend on the position of the model M5 without receiving
weight from other models, therefore the vertices V501
(M5)-V506 (MS5) are sorted to the native group respectively,
and are distributed to the model MS. In this way the actual
vertices are sorted into four vertex groups. Then the con-
verter sorts the vertices in the above four groups for each
model which influences these vertices (S66, Steps 125-128
in FIG. 17). In the case of the example in FIG. 18, for
example, the four vertices V101 (M1), V106 (M3), V107
(M1) and V113 (M4), which belong to the native group of
the model M1, are sorted for each one of the models M1, M3
and M4 which influence these vertices, and are rearranged in
the sequence of V101 (M1), V107 (M1), V106 (M3) and
V113 (M4), for example. The nine vertices V102 (M2)
-V105 (M2) and V108 (M2)-V112 (M2), which belong to
the start weight group of the model M1, remain in this
sequence since these vertices are all influenced by the model
M2. The two vertices V102 (M3) and V103 (M3), which
belong to the middle weight group of the model M1, remain
in this sequence. And the nine vertices V102 (M4), V103
M4), V104 (M3), V105 (M3) and V108 (M3)-V112 (M3),
which belong to the end weight group, are rearranged for
each one of the models M3 and M4 which influence these
vertices. The six vertices of the model M5 remain in the
same sequence since these vertices are all influenced by the
model MS.

Then the converter generates the format of the common
vertex buffer for the vertices which belong to the native
group and the start weight group out of the above four
groups (S68, Step 129 in FIG. 17). This common vertex
buffer is actually a buffer to store the actual vertex list,
where, at first, the actual vertices are grouped for each model
to which the vertices belong, then the vertices are grouped
for each native group and start weight group, and finally the
vertices are grouped for each model which influence these
vertices.

In the case of the example in FIG. 18, the list in the
common vertex buffer for the model M1 has vertices V101
and V107 for the influential model M1, the vertex V106 for

US 6,437,779 B1

19
the model M3, and the vertex V113 of the model M4 in the
native group. In the start weight group, the list has nine
vertices V102-V112 for the influential model M2. In the
start weight group, no vertices for the model M1, M3 and
M4 exist.

For new vertex IDs, new serial numbers vx0—vx12 are
assigned to the vertices allocated in the common vertex
buffer. To assign a vertex ID, as described in Step 129 in
FIG. 17, a serial number which starts with an offset value
comprised of the number of vertices of each model in the
common vertex buffer can be used as an entry number. In the
case of the model M1, for example, the first address becomes
ADD (M1), and for the area of the vertex V102, ADD
(M1)+4 is set as the vertex ID, which indicates that the
vertex V102 is the fifth entry number from the first address
ADD (M1). Since the number of vertices in the model M1
is 13, the offset value of the model M1 is 13. Therefore, the
offset value 13 of the model M1 is used for the first address
ADD (MS5) of the next model, model M5, and entry numbers
0-6, starting with the first address ADD (5), are assigned to
the common vertices of the model MS5.

By using an offset value and entry number in this manner,
an address indicating an area of each vertex in the buffer
within the memory area can be easily set when the common
vertex list of each model is stored in the buffer. This matter
will be explained in detail later. Such an offset value and
entry number become the format information of the common
vertex buffer.

The above mentioned common vertex list is actually the
same as the actual vertex list of each model, and by storing
this list in memory and creating the common vertex buffer,
the integration (addition) of the multiplied value of the
weight values and coordinate or normal line data in the
weight operation can be executed for the common vertex
buffer. Also by assigning a new vertex ID to each vertex and
by using this vertex ID in the later mentioned vertex list and
polygon list, the reference ID of vertices used during opera-
tion by the drawing library can be simplified.

Since new vertex IDs are assigned, the vertex IDs in the
polygon list, which each model has, are converted to the new
vertex IDs as well (S68). By this conversion, the reference
of data in the common vertex buffer, when the drawing
(rendering) of polygons is executed after the weight opera-
tion of the models ends, can be simplified, and the speed of
the drawing step (rendering step) by the drawing library,
where real-time processing is demanded, can be increased.

As explained in FIG. 8, each one of the generated vertices
must be distributed to the models which influence the vertex.
Therefore the converter distributes the four types of vertices
to the models which influence the vertices respectively
(S70). Distribution here means listing the vertex in the
vertex list in the model which influences the vertex, and
converting the coordinate data and normal line data of the
vertex to the local coordinate system of the model. Conver-
sion to the local coordinate system is executed by multiply-
ing data on each vertex on the global coordinate system,
determined in Step S62, by the reverse matrix of the model
matrix which indicates the position of the model.

The converter registers the above mentioned distributed
vertices in the vertex list of the distribution destination
model (S72). This vertex list is created for each one of the
four groups. For the reference IDs of the registered vertices,
new vertex IDs (e.g. an offset value and entry number) are
used according to the format of the common vertex buffer.
As a result, accessing an area of the common vertex buffer
where an operation result is stored can be easier when the
weight operation is executed for a vertex in the vertex list.

10

15

20

25

30

35

40

45

50

55

60

65

20

In the case of the examples of FIG. 18 and FIG. 19, the
vertices in four groups in FIG. 18 are distributed to the
vertex lists of the models which influence the vertices, that
is, the models shown in parentheses in the drawings (e.g. the
model M1 in the case of V101 (M1)). As a result, the vertex
list shown in FIG. 19 is created for each model. In the vertex
list of the model M1, for example, the coordinate data VERT
and the normal line data NORM of the vertex V101 (M1)
and V107 (M1), which belong to the native group, are
arranged. The respective reference ID of a vertex is denoted
by “vertex ID (vx0, 2)”. That is, “vertex ID (vx0, 2)”
indicates two vertex areas in the area where the vertex ID in
the common vertex buffer in FIG. 18 is vx0. Another way of
assigning a reference ID is, for example, assigning new
vertex IDs, vx0 and vx1, to the vertex data in the vertex list
as attribute data.

As the example in FIG. 19 shows, the vertex list of the
model M2 has no vertices belonging to the native group, and
has nine vertices belonging to the start weight group. In the
case of a vertex belonging to the start weight group, the
vertex data includes weight data NFlagsW, which has the
weight value WT and the IDs of the actual vertices to be
stored (vx4 and vx5 in the case of the example in FIG. 19),
in addition to the coordinate data VERT and the normal line
data NORM. This actual vertex ID is defined by the offset
value of each vertex block of the common vertex buffer and
the entry number of that block, as shown in FIG. 18.
Therefore in the weight data NFlagsW, the entry value can
be used as the vertex ID.

The vertex list of the model M3 shown in FIG. 19 includes
the vertex data on the vertex V106 (M3), which belongs to
the native group, vertex data (coordinate data, normal line
data and weight data) on the vertices V102 (M3) and V103
(M3), which belong to the middle weight group, and vertex
data (coordinate data, normal line data and weight data) on
the seven vertices, which belong to the end weight group.
The vertex list of the model M4 includes one vertex, V113
(M4), which belongs to the native group and two vertices,
V102 (M4), V103 (M4), which belong to the end weight
group.

When the above steps S62-S72 are executed for all the
models, the polygon list 116 based on the new vertex IDs
and the vertex list 117 divided into four groups are generated
as respective model data 115, as shown in FIG. 17. An
example is shown in FIG. 19. Also the common vertex list
shown in FIG. 18 is generated, and format information (e.g.
offset value and entry number) of the corresponding com-
mon vertex buffer is generated. As a result, the drawing
library can create the common vertex buffer to store the data
on the actual vertices, can execute the operation for native
vertices, the operation for start weight vertices, the operation
for middle weight vertices, and the operation for end weight
vertices sequentially according to the vertex list distributed
to each model, and can draw polygons by referring to the
polygon list based on the new vertex IDs and by utilizing the
vertex data, after the weight operation, written in the com-
mon vertex buffer.

In addition to the creation of the format information of the
common vertex buffer and the vertex list and polygon list for
each model, as shown in FIG. 14, the converter simulates the
drawing (rendering) timing of each model and adds a
drawing command or non-drawing command to the polygon
list. For this, the converter detects the timing when the
weight calculation for the vertices which influence the actual
vertices in the model ends.

To detect the timing, the converter determines the counter
value which indicates the number of times the weight

US 6,437,779 B1

21

calculation is executed for each model having polygons
(S36). This counter value is equal to the number of vertices
divided into four groups in each model. That is, the counter
value of the model M1 is 24, and the counter value for the
model M5 is 6. In other words, this counter value indicates
the number of times when the drawing library executes
writing or integration (addition) in the common vertex
buffer, and the end of the weight calculation for the counter
value times in each model means that the weight calculation
of models which influence the vertices of the model have
ended, and also means that the data of the actual vertices is
defined, and preparation for drawing (rendering) is ready.

In the drawing simulation by the drawing library, the
matrix calculation and the weight calculation are executed
sequentially for the vertex data of the vertex list of each
model, writing or integration is executed in the vertex area
in the common vertex buffer (S42), and the counter of the
model where the written or integrated vertices belong is
incremented +1 (S44). In the case of the example in FIG. 19,
the common buffer area of the model M1 is secured in the
memory, and for the vertex list of the model M1, the
coordinate data and normal line data at new positions are
determined by multiplying the coordinate data VERT and
the normal line data NORM of the vertex V101 (M1) by the
model matrix of the model M1, then the weight value 1.0
(100%) is multiplied, and this data is written in the area of
vx0 in the common vertex buffer shown in FIG. 18. This
vertex V101 (M1) is a native group which is influenced
100% by the model M1, so the weight value is 1.0 and data
remains unchanged even if the weight value is multiplied.
For the vertices of the native group, data may be written in
the common vertex buffer without executing weight calcu-
lation (multiplication). Then the same calculation is
executed for the vertex V107 (M1), and the determined data
is written in the vx1 area in the common vertex buffer. As a
result, the counter value of the model M1 becomes 2.

The above steps S42 and S44 are repeated in the sequence
of the vertex list in each model. And the execution of steps
S42 and S44 ends for all the vertices of a model (S46), and
whether the weight calculation for that model has ended is
judged by judging whether the counter value of the model is
the same as the setting (S48). In the case of the model M1
in FIG. 19, for example, the counter value is 2 and has not
reached the setting, which is 24, even if the weight calcu-
lation for the two vertices, vertex V101 (M1) and vertex
V107 (M1), has ended, therefore the drawing of the model
M1 cannot be executed. In the case of a conventional model
comprised of a plurality of polygons, the positions
(coordinates) and normal lines of the vertices constituting
the polygons are defined uniformly only if the position of the
model is defined. In other words, if the model matrix of the
model is determined and the model matrix is multiplied with
the coordinate data and normal line data, then the new
coordinate data and normal line data are defined. This means
that the drawing (rendering) of the model can be executed at
this point. That is, the drawing of the model can be executed
if the matrix operation ends.

In the case of the integrated shaping model (envelope),
however, which is influenced by other models, the drawing
of the model cannot be executed until all the weight calcu-
lation end for those influences.

So in accordance with the present embodiment, if the
weight calculation of a model has not completed, an non-
drawing command DRAWCP (ADD) is generated in the
polygon list of that model, and is registered in the later
mentioned non-drawing table shown in FIG. 21, so as to
secure the common vertex buffer area for the next model

10

15

20

25

30

35

40

45

50

55

60

65

22

(S50). The attribute data ADD of the above non-drawing
command indicates an address of the polygon list. In the
case of the example in FIG. 19, the non-drawing command
DRAWCP (ADD) is written at the beginning of the polygon
list of the model M1. As a result, the polygon list of the
model M1 completes. DRAWCP is an abbreviation for
“DRAW Cash Polygon™.

If the weight calculation of the model has ended, on the
other hand, then a drawing command DRAWCP (ADD) is
added to the polygon list of the model (S52). And the arca
of the common vertex buffer is released. Or, rather than
adding the drawing command, a rule where the drawing
(rendering) of the model can be executed immediately if a
non-drawing command is not written in the polygon list may
be set. In other words, when the matrix calculation and the
weight calculation for the vertex list of the model ends, the
drawing (rendering) may be executed as a default. In this
case, the above mentioned drawing command is not added
to the polygon list of the model, and whether the non-
drawing command exists or not becomes critical.

When the calculation for the vertex list of the model ends,
the vertex list and the polygon list of the model are output
(S54). The polygon list includes the registration ID of the
non-drawing table for the non-drawing command, and the
registration ID of the drawing table for the drawing com-
mand.

Even if operations for all the vertices in the vertex list of
the model have not ended, the end of the weight calculation
of the non-drawing model must be detected by referring to
the counter value for each model (S58). Also a drawing
command DRAWDP (ADD) is generated in the polygon list
of the currently processing model for the non-drawing
model for which weight calculation ended. As a result, the
area of the common vertex buffer for the model for which
drawing became possible is released (S60). DRAWDP is an
abbreviation for “DRAW Draw Polygon”.

The above simulation operation is executed for the vertex
lists of all the models.

To understand the above more concretely, the examples in
FIG. 18 and FIG. 19 are used for explanation. FIG. 20 is an
example of the polygon list to be generated in this case, and
FIG. 21 is an example of the non-drawing table. At first, the
converter executes the matrix calculation and the weight
calculation for the vertex list of the model M1, and writes the
result in the corresponding areas in the common vertex
buffer. Since the weight calculation has not ended, even
when operations for all the vertex data in the vertex list ends,
the non-drawing command DRAWCP (0) is registered at the
beginning of the polygon list 145 for the model M1. At this
time, the correspondence between the first address ADD1 of
the polygon list and the attribute data “0” of this command
is registered in the non-drawing table 143.

Then the converter executes the matrix calculation and the
weight calculation for the vertex list of the model M2 in the
same way, and writes or integrates (adds) the result in the
corresponding areas in the common vertex buffer. Also since
the weight calculation for the vertices of the model M1 has
not ended when the calculation for all the vertices of the
vertex list of the model M2 ends, the same processing is
executed for the next model, model M3. When the process-
ing for the vertex list of the model M4 ends, the weight
calculation for actual vertices of the model M1 ends, and the
drawing of the model M1 becomes possible. So the drawing
command DRAWDP (0) for the model M1, which has been
in the non-drawing state, is registered in the beginning of the
polygon list 147 of the model M4.

In the vertex list of the model M5, not shown in FIG. 19,
all the vertices belong to the native group, therefore the

US 6,437,779 B1

23

model M5 is in a drawing enabled state when the matrix
calculation and the weight calculation of the vertex list of the
model M5 ends, therefore the drawing command DRAW for
the model MS is registered in the polygon list 146 of the
model MS. Or, if the drawing is executed as the default when
a non-drawing command is not registered, then it is unnec-
essary to register the drawing command DRAW for the
model MS.

Each polygon list 145, 146 and 147 includes polygon
names PG and vertex IDs of the vertices constituting the
polygons. For the vertex IDs, new consistent vertex IDs vx0
and vx1, which were assigned in the common vertex buffer,
are used in the case of the example in FIG. 20. The polygon
list may be created using an actual address based on the
entry number and offset value when the common vertex
buffer was generated as the vertex ID. An example of this
will be explained later.

In the non-drawing table 143 in FIG. 21, the first address
ADD1 of the polygon list of the model corresponds to ID=0
of the model M1. The non-drawing table 143 is not always
necessary, and the first address ADD1 of the polygon list
may be directly assigned to the attribute data of the non-
drawing command DRAWCP.

As explained above, the converter generates conversion
data (not in real-time), which has the format information of
the common vertex buffer and the vertex list and polygon list
of each model, from the original data of the integrated
shaping model, which was generated by a three dimensional
modeler. This conversion data is recorded in a recording
medium for games, e.g. CD-ROM, along with the game
program and the drawing library.

Now vertex IDs when the common vertex buffer is
generated and released will be explained. FIG. 22 is a
drawing which explains vertex IDs. In the example in FIG.
22, the model M6, which has a polygon to be traced next, is
added to the above mentioned models M1-MS5 to easily
explain vertex IDs. FIG. 22 A shows a state when the vertices
of the model are sorted into native, start weight, middle
weight and end weight groups, and the format of the vertex
buffer is created from the vertices which belong to the native
and start weight groups. In this state, a serial number
vx0-vx(h+i+j-1) is assigned to all the vertices. Here h, i and
] are the offset values of the models M1, M5 and M6
respectively. It is assumed that the converter has executed a
simulation operation in this state, by which the common
vertex buffer areas were generated and released, as shown in
FIG. 22B.

Among the above mentioned models M1-M$, the models
M1 and MS have actual vertices. And the operation for the
vertex list is executed in the sequence of the models M1,
M2, M3, MS and M4, which is the tracing sequence of the
model hierarchy. Therefore if the first address of the com-
mon vertex buffer area is ADDm, then the common vertex
buffer area of the model M1 is generated first at the address
ADDm or later (FIG. 22B (B-1)). Then the common vertex
buffer area of the model M5 is generated after the area of the
model M1 (FIG. 22B (B-2)). At this point, the address of the
vertex of the model M1 is specified by the first address
ADDm and the entry value 0—(h-1). The address of a vertex
of the model MS is specified by the first address ADDm plus
the offset value h of the model M1 and the entry value 0—i
of the model MS. Therefore at this point, the address of a
common vertex of the models M1 and MS is specified by a
serial number 0—(h+i-1). This address is used for the vertex
ID.

In other words, the drawing of the models M1 and MS is
executed at this point, then the common vertex buffer areas

10

15

20

25

30

35

40

45

50

55

60

65

24

of the models M1 and MS are released. Therefore these
addresses can be used for all the vertex IDs of the polygon
lists of the models M1 and MS. This increases the processing
efficiency of the drawing library.

When the drawing of the models M1 and M5 ends, the
common vertex buffer areas for the models M1 and M5 are
no longer necessary. The common vertex buffer area of the
model M6 to be drawn next is therefore generated at the
entry number 0—(j-1) from the first address ADDm again.
And these addresses are used for the vertex IDs of the vertex
list and the polygon list of the model Mé6. In other words,
addresses of the common vertex buffer areas of different
models overlap so as to minimize the generation and main-
tenance of the common vertex buffer areas. Such overlap-
ping of addresses does not cause problems, since the vertex
list and the polygon list are referred to in the tracing
sequence of the hierarchical structure of the models.

A variant form is to generate a correspondence table
between the addresses of the common vertex buffer areas
and the consistent vertex IDs by a simulation operation of
the converter using the consistent vertex ID vx0—vx (h+i+
j=1) for the vertex list and the polygon list. In this case, the
drawing library can know the addresses of the buffer areas
of the vertex IDs correspond to the vertex list and the
polygon list by referring to the correspondence table.

FIG. 23 is a drawing depicting another example of a
vertex list. This example is the case when the addresses of
the common vertex buffer area are used as vertex IDs. The
vertex list 200 has a set (chunk) of vertex data for the four
groups between the start description 201 and the end
description 203 of the vertex list. 202 is the description
denoting the end of the vertex data chunk. In other words,
the vertex list 200 has a chunk 218 of the native vertices
which have no weight, a chunk 228 of the vertices which
belong to the start weight group, a chunk 238 of the vertices
which belong to the middle weight group, and a chunk 248
of the vertices which belong to the end weight group. Each
chunk has a description 211 denoting the data chunk name
of the vertex group which has no weight, and a description
221 denoting the data chunk name of the vertex group which
has weight. These descriptions include a flag 212 indicating
weight calculation continuance, a chunk size 213, and a
classification of start, middle and end, 222, 232 and 242.

Each chunk also includes descriptions to denote the offset
value 214 of the vertex list block of the common vertex
buffer and the number of vertex data 215 in that chunk. The
vertex data has the coordinate data 216 (VERT), the normal
line data 217 (NORM) and the weight data(NFlagsW), just
like the case shown in FIG. 19. The weight data(NflagsW)
has the entry number 226 of the vertex in the common vertex
buffer and the weight value (%) 227. The arca (vertex ID) of
an actual vertex in the common vertex buffer can be speci-
fied by the offset value 214 and the entry number 226.

Next a procedure of the drawing library will be explained.
FIG. 24 is a flow chart depicting a procedure of the drawing
library. As shown in FIG. 13, the game program generates
the matrix to move models constituting characters respond-
ing to the control data which the operator inputs when the
game is progressing (S22). Then the drawing library draws
the polygons (S24).

The procedure of the drawing library is similar to the
simulation operation of the converter. The drawing library
draws polygons in real-time using the conversion data. The
drawing library determines the coordinate data and normal
line data of the vertices after movement by the matrix
calculation in the sequence of the vertex list of each model,
according to the tracing sequence of the hierarchical struc-

US 6,437,779 B1

25

ture of the models (S80). The coordinate data and normal
line data are determined by multiplying the conversion data
by the model matrix, and are then converted to the global
coordinate system (S80). Along with this matrix calculation,
the common vertex buffer area of the model is secured in the
memory (S78). Such a common vertex buffer area can be
secured for as much as is needed based on the format
information in the conversion data. If the vertex for which
the matrix calculation is executed is a vertex that is sorted to
the native group (S82), then 100% (1.0) is merely multiplied
in the weight calculation, so actually the coordinate data and
normal line data determined by the matrix operation are
recorded in the corresponding area of the common vertex
buffer (S84).

If the matrix for which the matrix operation is executed is
a vertex which has weight, that is, a vertex which belongs to
the start weight, middle weight or end weight group (S86),
then weight calculation is executed using the weight data,
and the coordinate data and normal line data in the calcu-
lation result is written or integrated (added) in the corre-
sponding common vertex buffer. In the case of a vertex
which belongs to the start weight group, which is a vertex
appearing first, the calculation result is written in the com-
mon vertex buffer, but in the case of a vertex which belongs
to the middle weight or end weight group, the calculation
result is integrated with (added to) the value already written
there. And the counter of the model where the calculation
result is recorded is incremented +1 (S90).

The above matrix calculation and weight calculation are
executed for all the vertex data in the vertex list of the model
(S92). Since consistent IDs are used for all the vertex IDs,
and the vertex IDs correspond with the reference indexes of
the vertex data area of the common vertex buffer, this weight
calculation can be executed at very high-speed. The vertex
list is also divided for each model. Therefore the same model
matrix can be used repeatedly for the vertices within the
same model in the matrix calculation. This means that it is
unnecessary to frequently change the model matrix to be set
in the CPU during the matrix calculation by the drawing
library. This increases the matrix calculation efficiency and
enables drawing in real-time.

The vertex list is grouped to each vertex group so that the
procedure of the weight calculation for a group of vertices
can be unified. In other words, in the case of the vertices
which belong to the native group, the matrix calculation
result is directly written in the common vertex buffer, in the
case of the vertices which belong to the start weight group,
the result of the matrix calculation and the weight calcula-
tion is written in the common vertex buffer, and in the case
of the vertices which belong to the middle weight and end
weight groups, the result of the matrix calculation and
weight calculation is integrated with (added to) the data in
the common vertex buffer. Since the procedure can be
unified in this way, the operation efficiency of the drawing
library increases, which enables real-time operation.

When the operation for the vertex list of one model ends,
the drawing library refers to the polygon list of that model.
If an non-drawing command DRAWCP is written in the
polygon list (S94), the drawing (rendering) of the model
cannot be executed, so the model is registered in the
non-drawing table (896). If a drawing command DRAWDP
for non-drawing model is written in the polygon list (S98),
the address of the non-drawing model registered in the
non-drawing table is referred to, and the drawing (rendering)
of the polygons is executed in the sequence of the polygon
list (S100). This rendering of polygons is executed using the
coordinate data and normal line data in the global coordinate

10

15

20

25

30

35

40

45

50

55

60

65

26

system based on the operation result stored in the common
vertex buffer. Therefore when the drawing of the model
ends, the area of the common vertex buffer corresponding to
the model is no longer necessary, and is released. Release
here means setting the state where the area can be allocated
as another common vertex buffer area if necessary. When a
drawing command DRAW to instruct drawing the model is
written in the polygon list, the drawing (rendering) of that
model is executed and the corresponding common vertex
buffer area is released (S102).

It is also possible to draw the polygons automatically
according to the polygon list of the model when the opera-
tion of the vertex list in the model ends, which is a default
procedure, as long as no non-drawing command exists.
Before executing drawing (rendering), normalization is
executed, if necessary for the normal line data for which
vertex calculation ends (893). The normal line data is used
to determine the scalar product (cos 6, 6 is the angle between
the vectors) between the vector of the light from the light
source and the normalized normal line vector in the render-
ing step. According to the scalar product, such processing as
for diffused light in pixels in the polygons is executed.
Therefore, depending on the operation in the rendering
process, executing the normalization of a normal line vector
(processing to make the scalar value 1) in advance is
necessary.

In the drawing (rendering) step by the drawing library, it
iS unnecessary to secure the common vertex buffer area for
all the models in memory. The common vertex buffer area
corresponding to a model must be secured until the neces-
sary weight operation ends. However, once all the weight
operations end and the model can be drawn, the drawing
(rendering) of the polygons of the model can be executed
according to the drawing command, which has been pre-
registered in the polygon list. When the drawing ends, the
vertex data in that common vertex buffer area is no longer
necessary, so this area is released so as to make it available
as the common vertex buffer area for another model. This
means that the capacity of the common vertex buffer area in
the memory can be relatively small. This is a big merit for
a game machine which can use only a relatively small
capacity memory.

In this way, the converter creates the conversion table in
advance, so the drawing library, which demands rendering in
real-time, can execute the matrix calculation and weight
calculation very efficiently, as mentioned above. Also the
capacity of the data area (common vertex buffer area) of the
actual vertices to be secured in memory can be decreased.
Therefore, the drawing library can create images of charac-
ters in real-time using the game machine responding to
operation by the operator.

In the above embodiment, the processing of conversion
data by the converter and processing by the drawing library
for multi-weight data, where actual vertices are influenced
by a plurality of models in the integrated shaping model,
were explained. By using such a multi-weight integrated
shaping model, the joint part connecting the polygons and
the shape of muscles on the surface can be drawn in a more
natural way.

However, depending on the scene in the game, a compli-
cated vertex operation following multi-weight data process-
ing is unnecessary, even for the character comprised of a
multi-weight integrated shaping model, if the character is at
a distant position from a viewpoint, for example. This is
because a character at a distant position from a viewpoint
does not require high quality images, unlike a character at
the center of the screen at a position near the viewpoint. In

US 6,437,779 B1

27

such a case, not the vertex operation following multi-weight
processing, which requires time and hardware resources for
arithmetic processing, but the vertex operation following
one weight processing is used, so that image processing time
for an entire screen and hardware resources can be mini-
mized. One weight refers to a model comprised only of
vertices which are influenced by only one model, that is,
comprised only of vertices which belong to the native group.

FIG. 25 is a flow chart depicting the procedure of the
converter to obtain the one weight vertex list from the data
of a multi-weight integrated shaping model. This flow chart
is different in part from the flow chart on the distribution of
vertices to models and the vertex list generation for multi-
weight data shown in FIG. 16.

Converting coordinates and normal line data of actual
vertices of the integrated shaping model in basic form to the
global coordinate system in Step S62 is the same as the case
of multi-weight processing. Then the converter divides the
actual vertices of the original model data into groups based
on the weight according to the tracing sequence of the
hierarchy of the models (S64). That is, the actual vertices of
the original model data are divided into the native group and
the other groups used for multi-weight. Then the converter
converts the vertices, which have weight (influence) from a
plurality of models, to the native vertices of the model which
weight is largest (S65). In the case of the example in FIG.
8, for example, in the vertex V102, which has weight from
the three models M2, M3 and M4, the weight value from the
model 4 is the largest, 40%, so among the three vertices
V102 (M2), V102 (M3) and V102 (M4), only the vertex
V102 (M4) is set as a vertex belonging to the model M4, and
the other vertices V102 (M2) and V102 (M3), whose weight
value is small, are ignored. As a result, the vertex V102
becomes the native vertex which is influenced 100% by the
model M4.

By the processing in Step S65, all the vertices become
single weight vertices which are influenced by one model.
Processing hereafter is the same as the case of the multi-
weight in FIG. 16. That is, the vertices are sorted for each
model which influence on the vertices (S66), and consistent
numbers are assigned to all the vertices as new vertex IDs,
which are also used on the polygon list of each model (S68).
Or, just like the case of multi-weight, a vertex ID based on
the offset value and entry number of the common vertex
buffer may be used.

Then the converter distributes all the vertices to the
models which influence the vertices (models where the
vertices belong), and converts the vertex data to the local
coordinate system of the model (S70). And the converter
registers these distributed vertices to the vertex list of the
distribution destination model (S72). Since this case con-
cerns single weight, no such groups as a native group or start
weight group exist in the vertex list of each model, unlike the
case of multi-weight, and all the vertices become native
vertices. Actual vertices in the vertex list have, of course,
vertex IDs, based on the format of the common vertex buffer.

In other words, in the case of single weight, a list of actual
vertices constituting the polygons of the model is created for
each model in the common vertex buffer area, and a list of
the native vertices which the model influences is created in
the vertex list of each model. Therefore, if such a single
weight conversion data is used, the drawing library can
execute only one vertex operation for one vertex, which
simplifies the drawing process and enables high-speed draw-
ing processing.

The single weight conversion data is preferably generated
for all the multi-weight format models by the converter.

10

15

20

25

30

35

40

45

50

55

60

28

Therefore, for the multi-weight format models, the converter
generates multi-weight format conversion data according to
FIG. 16, and single weight format conversion data according
to FIG. 25. The drawing library executes the drawing
processing using the single weight format conversion data
during a game, when the precise movement of models is not
required, for example, when a character to be drawn is at a
position distant from a viewpoint, or when the character is
not at the center of the screen, or when the character is at a
position behind a semi-transparent polygon. And the draw-
ing library executes drawing processing using the multi-
weight conversion data only for characters at the most
outstanding position at the center of the screen. As a result,
the load on drawing processing required for the entire screen
can be decreased.

According to the present invention, model conversion
data with an optimum data structure can be provided to the
drawing library, which is recorded in a recording medium
for games (or simulation), and executes image processing in
real-time, therefore integrated shaping models which can
implement a more natural movement of joints and outer
surface of characters can be drawn in real-time.

According to the present invention, an image processing
method (converter), which converts data of an integrated
type model generated by a three dimensional modeler to data
of a model having an optimum data structure for the drawing
library, which is recorded in a recording medium for games
(or simulation) and executes image processing in real-time,
is provided. Therefore, the model data in the integrated
shaping model format using the three dimensional modeler
can be used for game machines (or simulators), and a more
natural movement of objects can be provided for games.

Also, according to the present invention, an image pro-
cessing method, to efficiently draw integrated shaping mod-
els using conversion data, or a recording medium recording
a program for a computer to execute the image processing
method, can be provided, therefore characters comprised of
integrated shaping models can be drawn in real-time, and
images of characters can be created with a more natural
movement by a game machine.

What is claimed is:

1. A computer-readable recording medium recording inte-
grated shaping model data having a plurality of models
linked by a hierarchical structure where at least a first model
has a plurality of vertices constituting polygons, and at least
the position of a first vertex is influenced by positions of a
plurality of models and weight values from these models,
comprising:

format data of a common vertex buffer for saving the data
on the plurality of vertices in said plurality of models
for each model;

a vertex list which is created for each one of said models
which influence the vertices and has vertex data speci-
fied by a vertex ID in said common vertex buffer;

model matrix data which is created for each one of said
models and sets the model positions of said plurality of
models in basic forms; and

a polygon list which is created for each one of said models
having the polygons and has polygon data where said
vertex ID is attribute data,

wherein the vertex data in said vertex list has at least the
position data of the vertex, a weight value from the
model where said vertex list belongs, and vertex ID in
said common vertex buffer corresponding to the vertex.

2. The computer-readable recording medium recording
integrated shaping model data according to claim 1, wherein

US 6,437,779 B1

29

said first vertex influenced by said plurality of models has
distributed vertex data for the number of said plurality of
models, and said distributed vertex data belongs to said
vertex lists of the models which influence said first vertex.

3. The computer-readable recording medium recording
integrated shaping model data according to claim 2, wherein
said vertex list is divided into start weight vertices, for which
the vertex operation is executed first when tracing is
executed according to the hierarchical structure of said
models, middle weight vertices, for which said vertex opera-
tion is not executed first or last, and end weight vertices, for
which said vertex operation is executed last.

4. The computer-readable recording medium recording
integrated shaping model data according to one of claims 1
to 3, wherein said vertex list further has data on native
vertices which are influenced only by the model which this
vertex list belongs to.

5. The computer-readable recording medium recording
integrated shaping model data according to one of claim 1,
wherein said vertex data has coordinate data and normal line
data of said vertices.

6. The computer-readable recording medium recording
integrated shaping model data according to claim 5, wherein
said vertex data follows a local coordinate system of the
model of the vertex list which the vertex data belongs to.

7. The computer-readable recording medium recording
integrated shaping model data according to one of claim 1,
wherein the vertex ID in said common vertex buffer has an
entry number of the vertex of each model and the offset
value corresponding to the number of vertices of each
model.

8. The computer-readable recording medium recording
integrated shaping model data according to one of claim 1,
wherein said polygon list has a drawing command which
instructs the drawing of said polygon of a predetermined
model, or a non-drawing command which instructs not to
draw the polygon of the model which this polygon list
belongs to.

9. A computer-readable recording medium recording inte-
grated shaping model data, having a plurality of models
linked by a hierarchical structure where at least a first model
has a plurality of vertices constituting polygons, and at least
a first vertex position is influenced by positions of a plurality
of models and weight values from these models, comprising:

format data of a common vertex buffer for saving the data
on the plurality of vertices in said plurality of models
for each model,

a vertex list which is created for each one of the models
which influence said vertices and has vertex data speci-
fied by a vertex ID in said common vertex buffer; and

apolygon list which is created for each one of said models
having said polygons and has the polygon data where
said vertex ID is attribute data.

10. An image processing method for converting original
model data into integrated shaping model data having a
plurality of models linked by a hierarchical structure where
at least a first model has a plurality of vertices constituting
polygons, and at least the position of a first vertex is
influenced by positions of a plurality of models and weight
values from these models, wherein said original model data
has a plurality of model data linked by said hierarchical
structure, said original model data comprises an original
vertex list having vertex data of this model, a weight list
having vertex data on vertices which this model influences,
and an original polygon list where the vertex ID of said
vertex list is attribute data, and

10

15

20

25

30

35

40

45

50

55

60

65

30

said image processing method comprises the steps of:

generating format data of a common vertex buffer to
store data on the plurality of vertices in said plurality
of models for each model;

generating a vertex list which is created for each model
which influences said vertices, and has vertex data
specified by a vertex ID in said common vertex
buffer; and

generating a polygon list which is created for each
model having said polygons where said vertex ID is
attribute data.

11. The image processing method for converting model
data according to claim 10, wherein the vertex data in said
vertex list has at least the position data of the vertices,
weight values from the model which said vertex list belongs
to, and vertex IDs in said common vertex buffer correspond-
ing to these vertices.

12. The image processing method for converting model
data according to claim 11, wherein said step for generating
the vertex list generates distributed vertices for the number
of said plurality of models for said first vertex which is
influenced by said plurality of models, and distributes the
data on said distributed vertices to said vertex list of the
models which influence the first vertex.

13. The image processing method for converting model
data according to claim 12, wherein said step for generating
the vertex list divides said vertex data into data for start
weight vertices, for which the vertex operation is executed
first when tracing is executed according to said hierarchical
structure of the models, data for middle weight vertices, for
which said vertex operation is not executed first or last, and
data for end weight vertices, for which said vertex operation
is executed last, in said vertex list.

14. The image processing method for converting model
data according to one of claims 10 to 13, wherein said vertex
ID has an entry number of the vertex in each model, and an
offset value corresponding to the number of vertices of each
model.

15. The image processing method for converting model
data according to one of claim 10, further comprising a
drawing command generation step where: a dummy vertex
operation is executed for the vertex data in the vertex list of
the model according to the sequence of tracing following the
hierarchical structure of the models;

when said dummy vertex operation for the vertex list of

one model ends, a non-drawing command is generated
in the polygon list of this model if the weight calcula-
tion for the vertices of this model has not ended; and

a drawing command for said non-drawing model is gen-

erated in the polygon list of the target model of said
dummy vertex operation if the weight calculation for
the vertices of the non-drawn model ends.

16. The image processing method for converting model
data according to claim 10, further comprising a one weight
vertex list generation step, where said first vertex which is
influenced by said plurality of models is converted to a
vertex which is influenced only by a model having the
largest degree of influence among said plurality of models,
and the data on said converted vertex is distributed to said
vertex list of this model.

17. An image processing method for drawing an inte-
grated shaping model which has a plurality of models linked
by a hierarchical structure, where at least a first model has
a plurality of vertices constituting polygons and at least the
position of the first vertex is influenced by positions of a
plurality of models and weight values from these models,
wherein the data of said integrated supply model comprises:

US 6,437,779 B1

31

format data of a common vertex buffer which stores data
on the plurality of vertices in said plurality of models
for each model,

a vertex list which is created for each model which
influences said vertices and has vertex data specified by
a vertex ID in said common vertex buffer; and

apolygon list which is created for each model having said
polygons and includes polygon data where the vertex
ID is attribute data,

said image processing method comprising the steps of:

generating the common vertex buffer corresponding to
said plurality of models in the sequence of tracing of
said hierarchical structure according to said format
data;

generating model matrix data where the positions of the
models are set based on the game progress data;

generating common vertex data by executing matrix
calculation for generating vertex data after move-
ment according to said model matrix data and weight
calculation for integrating weight values from said
models to said vertex data after movement, for the
vertex data of the vertex list of said models, and by
storing or adding this calculated vertex data to areas
according to said vertex IDs in said common vertex
buffer; and

rendering said polygons according to said common
vertex data.

18. The image processing method according to claim 17,
wherein the vertex data in said vertex list has at least the
position data of the vertices, weight values from the model
which said vertex list belongs to, and the vertex IDs in said
common vertex buffer corresponding to these vertices, and
in said step of generating the common vertex data, said
position data is multiplied by said model matrix for said
matrix calculation, and said operated position data is mul-
tiplied by said weight value for said weight calculation.

19. The image processing method according to claim 18,
wherein said vertex list is divided into start weight vertices,
for which the vertex operation is executed first when tracing
is executed according to said hierarchical structure of said
models, middle weight vertices, for which said vertex opera-
tion is not executed first or last, and end weight vertices, for
which said vertex operation is executed last, and

in said step of generating the common vertex data, said
operated vertex data for said start weight vertices is
stored in areas corresponding to said vertex IDs in said
common vertex buffer, said operated vertex data for
said middle weight vertices and end weight vertices are
added to the vertex data in areas corresponding to said
vertex IDs in said common vertex buffer.

20. The image processing method according to claim 17
or 18, wherein said polygon list has a drawing command to
instruct to draw said polygons of a predetermined model or
a non-drawing command to instruct not to draw the poly-
gons of the model which this polygon list belongs to, and

said rendering step refers to the polygon list of the model
each time said common vertex data generation step of
each model ends, and executes said rendering accord-
ing to said drawing command.

21. The image processing method according to claim 20,
further comprising a step for releasing the area of said
common vertex buffer corresponding to the model for which
said rendering is executed.

22. The image processing method according to claim 17,
wherein said model data also has a one weight vertex list
where said first vertex which is influenced by said plurality

10

15

20

25

30

35

40

45

50

55

60

65

32

of models is converted to a vertex which is influenced only
by the model which degree of influence is the largest among
said plurality of models, and data of said vertex is distributed
in said vertex list of this model, and said image processing
method generates said common vertex data for a predeter-
mined model according to said one weight vertex list.

23. A recording medium recording image processing
program for drawing an integrated shaping model which has
a plurality of models linked by a hierarchical structure,
where at least a first model has a plurality of vertices
constituting polygons and at least the position of a first
vertex is influenced by positions of a plurality of the models
and weight values from these models,

wherein said recording medium records data on said

integrated shaping model, and the data on the inte-

grated shaping model comprises:

format data of a common vertex buffer which stores
data on said plurality of vertices in said plurality of
models for each model,

a vertex list which is created for each model which
influences said vertices and has vertex data specified
by a vertex ID in said common vertex buffer; and

a polygon list which is created for each model having
such polygons and includes polygon data where said
vertex ID is attribute data,

and wherein said image processing program comprises a

program code causing a computer to execute proce-

dures of:

generating the common vertex buffers corresponding to
said plurality of models in the sequence of tracing of
said hierarchical structure according to said format
data;

generating model matrix data where the relative posi-
tional relationship among the models are set based
on the game progress data;

generating common vertex data by executing matrix
calculation for generating vertex data after move-
ment according to said model matrix data and weight
calculation for integrating the weight values from
said models to said vertex data after movement, for
the vertex data of the vertex list of said models, and
by storing or adding the operated vertex data to areas
according to said vertex IDs in said common vertex
buffer; and

rendering said polygons according to said common
vertex data.

24. The recording medium recording image processing
program according to claim 23, wherein the vertex data in
said vertex list has at least position data of the vertices, the
weight value from the model which said vertex list belongs
to, and the vertex ID in said common vertex buffer corre-
sponding to this vertex, and

in said procedure of generating the common vertex data,

said position data is multiplied by said model matrix for

said matrix calculation, and said operated position data
is multiplied by said weight value for said weight
calculation.

25. The recording medium recording image processing
program according to claim 24, wherein said vertex list is
divided into start weight vertices, for which the vertex
operation is executed first when tracing is executed accord-
ing to said hierarchical structure of said models, middle
weight vertices, for which said vertex operation is not
executed first or last, and end weight vertices, for which said
vertex operation is executed last, and

in said procedure of generating the common vertex data,

said operated vertex data for said start weight vertices

US 6,437,779 B1

33

is stored in areas corresponding to said vertex IDs in
said common vertex buffer and said operated vertex
data for said middle weight vertices and end weight
vertices are added to the vertex data in the areas
corresponding to said vertex ID s in said common
vertex buffer.

26. The recording medium recording image processing
program according to claim 23 or 24, wherein said polygon
list has a drawing command to instruct to draw said poly-
gons of a predetermined model or a non-drawing command
to instruct not to draw the polygons of the model which this
polygon list belongs to, and

said rendering procedure refers to the polygon list of the

model each time said common vertex data generation
procedure of each model ends, and executes said ren-
dering according to said drawing command.

27. The recording medium for recording the image pro-
cessing program according to claim 26, further comprising

10

15

34

a procedure for releasing the area of said common vertex
buffer corresponding to the model for which said rendering
is executed.

28. The recording medium recording the image process-
ing program according to claim 23, wherein said model data
also has a one weight vertex list where said first vertex
which is influenced by said plurality of models is converted
to a vertex which is influenced only by the model which
degree of influence is the largest among said plurality of
models, and data of said vertex is distributed in said vertex
list of this model, and said image processing program
comprises a code to cause a computer to execute procedure
to generate said common vertex data for a predetermined
model according to said one weight vertex list.

