Sega Saturn

From Sega Retro

(Redirected from Saturn)
Sega Saturn logo USA.png
Fast facts on Sega Saturn
Manufacturer: Sega
Variants: Sega Titan Video
Add-ons: Backup Memory, PriFun, Video CD Card, Extended RAM Cartridge, ROM Cartridge
Main processor: Hitachi SH-2
Release Date RRP Code
Sega Saturn
¥80,800 ?
Sega Saturn
$399.99[1] ?
Sega Saturn
Sega Saturn
Sega Saturn
DM 699[4]
Sega Saturn
Sega Saturn
$? ?
Sega Saturn
R$800.00 ?
Sega Saturn
? ?
Sega Saturn
₩550,000 SPC-ST

The Sega Saturn (セガサターン), is a video game console manufactured by Sega and was the successor to the Sega Mega Drive/Genesis (as opposed to add-ons such as the Sega 32X and Mega-CD). Initially released in 1994, the Saturn was a 32-bit compact disc-based system, and was a key player in what is now widely known as the fifth generation of video game consoles. The Saturn was first released on November 22, 1994 in Japan, May 11, 1995 in North America, and July 8, 1995 in Europe.

Depending on where you live, the Saturn could be described as either Sega's most successful console of all time (Japan) or one of their biggest commercial failures (North America). Despite being powerful for its time, its complex hardware and inability to meet rapidly evolving consumer expectations and demands put it in a distant third place in the Western world, but a combination of 2D sprite games, 3D arcade ports and strong marketing campaigns made the Saturn the most successful Sega console in Japan. Estimates for the total number of Saturns sold worldwide range from 10 million to 17 million.

The Saturn's main competitors were Sony's PlayStation released just a week after the Saturn in Japan, and the Nintendo 64 from September 1996. Its arcade counterpart was the Sega Titan Video (ST-V) system. It was replaced by the Sega Dreamcast in late 1998.


The Sega Saturn is the successor to the Mega Drive, though as a video game system it is almost entirely different. It is a "32-bit" console, marketed in such a way that it appeared to be an evolution of the "16-bit" era of video gaming dominated by the Mega Drive and Super NES (which in turn succeeded the "8-bit" Master System and NES, respectively).

This description, however, was initially fabricated - Sega of Japan originally claimed the Saturn was a "64-bit" consoleMedia:SegaSaturn94JPCatalog.pdf[7] and some within Sega even chose to call it an "128-bit" machine,[8] a number arrived at by cumulating processors rather than simply picking the main CPU. Alternatively some areas of Sega simply went down the "multi-processor" route, refusing to get drawn into the perceived differences between 32-bit and 64-bit.[9] This was incidentally the last video game generation where these so-called "bit wars" were considered to matter.

The system uses CD-ROMs as its primary choice of media. Though it contains a cartridge slot, this is not used for games, but rather backup memory or RAM cartridges. The former was to extend the space for save games beyond that of the Saturn's internal memory, while the latter was used to augment the Saturn's limited memory and to avoid long CD load times.

The Saturn has two controller ports, and the standard Saturn controller builds on that seen in the six button Sega Mega Drive controller. It adds two shoulder buttons, first seen on the Super NES controller, bringing the amount of buttons up to nine. The 3D Control Pad, released later with NiGHTS into Dreams, would supply the console with an analogue stick and analogue shoulder buttons, the latter later being used in the Sega Dreamcast before being adopted by Nintendo and Microsoft for their GameCube and Xbox consoles, respectively.

The Sega Saturn hardware combined features from several Sega arcade systems. The Saturn's geometry engine consists of three DSP math processors, two inside both Hitachi SH-2 CPU and one inside the SCU, which were all intended to be programmed in parallel using complex assembly language, similar to how Sega programmed 3D arcade games at the time. The VDP1 was based on the Sega Model series, with a quad polygon engine based on the Model 1, along with the Model 2's textured mapping capability. The VDP1 is capable of drawing more polygons than the Model 1, but less than the Model 2. The VDP2 was based on Sega System 32 technology (an evolution of Super Scaler technology). The VDP2's tiled infinite plane engine uses tilemap compression and a form of scanline/tiled rendering to draw large, detailed, 3D textured infinite planes (for things such as grounds, walls, ceilings, skies, etc.), with perspective correction and a virtually unlimited draw distance (and capable of effects such as transparency, parallax scrolling, water, fire, fog, heat haze, etc.), at a very high effective fillrate for its time. The VDP2 draws 3D infinite planes as large as 4096×4096 pixels at 30 FPS, equivalent to a fillrate of over 500 MPixels/s, significantly larger than what any console or PC hardware were capable of with polygons at the time. It requires 1 million texture-mapped polygons/sec, with 500 pixels per polygon, to draw a textured 4096×4096 infinite plane at 30 FPS; the Dreamcast was the first home system capable of doing this with polygons, as it was the first home system that exceeded 500 MPixels/s polygon fillrate (using tiled rendering).

The Saturn was known for its difficult 3D development environment (especially for third-party developers), including its complex parallel processing hardware architecture, requiring familiarity with assembly language, lack of an operating system, and initial lack of C language support, useful development tools and graphics software libraries. The VDP1 rendered quad polygons, which, despite being used by the most powerful gaming system at the time (Sega Model 2 arcade system), was not industry standard for 3D graphics, compared to the more widely used triangle polygons. The VDP1 also had issues with transparency (see Errata below). The VDP2's tiled infinite plane engine, which could draw large 3D infinite planes with a much higher draw distance, texture details and effective fillrate than polygons at the time, was unfamiliar to most developers who relied on polygons to construct 3D planes. Sega's first-party 3D games often utilized both CPU, the DSP, and/or both VDP, but the hardware's complexity and difficult 3D development environment led to most third-party developers only utilizing a single CPU and the VDP1, just a portion of the Saturn's power, for 3D games. While the VDP2 was under-utilized for 3D games, it was frequently used for 2D games, where the VDP1 draws sprites and the VDP2 draws scrolling backgrounds.

In comparison to the rival PS1, the Saturn is more powerful overall.[10] The Saturn has more raw computational power and faster pixel drawing; the PS1 can only draw pixels through its polygon engine, whereas the Saturn can draw pixels directly with its processors, giving it more programming flexibility.[11] When both SH-2 and the SCU DSP are used in parallel, the Saturn is capable of 160 MIPS and 85 million fixed-point operations/sec, faster than the PS1's GTE (66 MIPS); when programmed well, the Saturn's parallel geometry engine can calculate more 3D polygon geometry than the PS1. The PS1's GPU has a higher polygon fillrate (30 MPixels/s in 15-bit color) than the VDP1 (28 MPixels/s in 15-bit color), while the VDP2 has a significantly higher effective tile fillrate (500 MPixels/s); if the VDP2 is used for drawing infinite planes, this frees up the VDP1's polygons for other 3D assets, whereas the PS1 needs to draw many polygons to construct 3D planes (with very limited draw distance compared to the VDP2). The PS1 has more effective polygon transparency than the VDP1, while the VDP2 has more effective transparency than the PS1. The VDP1's quad polygons are drawn with edge anti‑aliasing (for smoother edges) and forward texture mapping (with limited perspective correction), while the VDP2's infinite planes are drawn with true perspective correction, whereas the PS1's triangle polygons have aliased edges and are drawn with affine texture mapping which lacks perspective correction (resulting in perspective distortion and texture warping). The PS1's straightforward hardware architecture, triangle polygons, development tools and effective C language support made it easier for developers to program 3D graphics. When it came to 2D graphics, on the other hand, the Saturn's combination of a VDP1 sprite framebuffer and VDP2 parallax scrolling backgrounds made it both more powerful and straightforward to program 2D graphics, compared to the PS1 which draws all 2D graphics to a single framebuffer.

The Saturn's VDP1 was the basis for Nvidia's first graphics processor, the NV1, which was one of the first 3D graphics accelerators on PC, released in 1995. Like the Saturn, it uses quad polygons and supports forward texture mapping with limited perspective correction, and several Saturn ports are available for it. However, the NV1 has a fillrate of 12.5 MPixels/s and a rendering performance of 50,000 polygons/sec, less than the VDP1's 28.4375–57.2728 MPixels/s fillrate and 500,000 polygons/sec rendering performance. In comparison, the most powerful PC graphics card of 1995, Yamaha's Tasmania 3D, which was based on triangle polygons, had a 25 MPixels/s fillrate and 300,000 polygons/sec rendering throughput, more than the NV1, but less than the Saturn and PlayStation.


Main article: Sega Saturn consoles.

There are a variety of Sega Saturn models of different shapes and colours, as well as novelty units, such as the Game & Car Navi HiSaturn. Differences between systems are not as drastic as seen with the Sega Mega Drive - the same basic feature set and component designs were used throughout the console's lifespan in all regions.


First seen on launch day in Japan (1994-11-22), the HST-3200 (later revised and released as the HST-3210, although the differences aside from a BIOS update are not fully understood), commonly referred to as the "grey Saturn" (although during development it had a metallic finish), was the basis for all Sega Saturns released between the Japanese launch and early 1996. These Saturns use blue "oval" buttons, mounted to black plastic at the front of the unit, and have both "power" and "access" LEDs similar to the Sega Mega-CD.

The Saturn saw variants produced by Hitachi and Victor as the HiSaturn and V-Saturn respectively, though aside from altered BIOSes and aesthetics (and bundles/pricing) these do not deviate much from the Sega designs. Novelty value sees these models worth slightly more in pre-owned markets - fewer were produced than the Sega models, but compatibility rates are much the same.

Overseas versions are physically identical (save for region encoding), but use black plastic throughout.


Released in March 1996, the HST-3220 stands as the only significant change to the Saturn's design, although functionality wise, the only feature omitted is the "access" LED seen in previous models. Reportedly the change in colour scheme was made to appeal to younger and female demographics.[12]

These "white" Saturns likely cost less to produce (they were certainly sold for a lot less in Japan), but from a user perspective the change is largely negligible - the console is roughly the same size and has no problems running any Saturn software. White Saturns opt for grey "circle" power and reset buttons and a pink "open" button for lifting the lid.

It is rumoured, though not proven, that the HST-3220 has a faster disc reading time than its earlier counterparts, meaning quicker loading screens in games.

When brought overseas the console continued to be shipped only in black, although the North American and European models have different coloured buttons. In 1998 Sega started releasing special versions of these consoles with semi-transparent plastic under the "This is cool" brand - only 30,000 units were produced. Again aside from aesthetic differences the consoles are interchangeable.

Some of the Japanese colour designs were also brought to Brazil.


BIOS Revisions
BIOS Version Machine Download
1.00 Sega Saturn (Japan) 1.00 (Asian Saturn) (info) (444 kB)
1.00a Sega Saturn (NA & EU) 1.00a (NA & EU Saturn) (info) (444 kB)
1.003 Sega Saturn Devkit (Japan) 1.003 (Asian Devkit) (info) (441 kB)
1.01 Sega Saturn (Japan), HiSaturn (Japan), V-Saturn (Japan) 1.01 (Asian Saturn) (info) (438 kB)
1.01 (Asian HiSaturn) (info) (438 kB)
1.01 (Asian V-Saturn) (info) (438 kB)
1.01a Sega Saturn (NA & EU) 1.01a (NA & EU Saturn) (info) (444 kB)
1.02 HiSaturn (Japan) 1.02 (JP HiSaturn) (info) (423 kB)
1.03 HiSaturn Navi (Japan) 1.03 (JP HiSaturn Navi) (info) (423 kB)


VDP1 transparency rendering quirk causes strips of pixels to be rewritten to framebuffer for 2-point (scaled) and 4-point (quadrangle) "sprites", applying the transparency effect multiple times. Rarely seen in commercial games (e.g. Robotica explosions), later titles implemented software transparency to correctly render transparent polygons (e.g. Dural in Virtua Fighter Kids).

The VDP1 supports per-pixel transparency between different polygons/sprites in the VDP1 framebuffer, or between VDP1 and VDP2 layers, but not both at the same time, with the VDP2's transparency overriding the VDP1's transparency. In addition, the VDP1 takes six times longer to draw transparent pixels than opaque pixels.Media:ST-013-R3-061694.pdf[13] The VDP2, in comparison, has no issues with transparency, nor does the use of transparency affect the VDP2's performance.

There are several ways to overcome the VDP1's transparency issues. The most common method used by Saturn games is to fake transparency with dithering, using a mesh that gets blended by a television's Composite or S-Video cable. Another method is to use the VDP2's hardware transparency, by using a VDP2 bitmap layer as an additional transparent framebuffer, copying transparent assets from the VDP1 framebuffer to a VDP2 bitmap framebuffer layer (e.g. the transparent polygons in Burning Rangers). Another method is software transparency, programming the CPU with software code.

Technical specifications






  • SCU math coprocessor: Geometry DSP @ 14.3 MHz, 32‑bit fixed‑point instructionsMedia:ST-097-R5-072694.pdf[20]Media:ST-097-R5-072694.pdf[36]Media:ST-TECH.pdf[37]
    • Parallel units: 32/48-bit ALU (arithmetic logic unit), 48/64‑bit Multiplier, 32-bit instruction decoder
  • Buses:Media:ST-097-R5-072694.pdf[36]Media:ST-TECH.pdf[38]
    • Internal: 4 parallel buses, 32-bit per bus, 128-bit overall bus width, 3 buses at 14.3 MHz, 1 bus at 28.6 MHz
    • External: 32-bit, 28.6 MHz
  • Cache RAM: 2 KB (1 KB data, 1 KB program)Media:ST-103-R1-040194.pdf[39]
  • Instructions: 6 parallel instructions per cycle (one instruction per unit/bus),Media:ST-TECH.pdf[21] 85.8 MIPS (6 MIPS per MHz)
    • Fixed-point operations: 28.6364 MOPS (million operations per second), 2 MOPS per MHz (2 parallel operations per cycle)
  • Capabilities: Matrix and vector calculations, 3D point transformations, lighting calculations, fixed-point calculations,Media:ST-TECH.pdf[37] faster than SH-2,Media:ST-TECH.pdf[40] can use DMA to directly fetch and store vertex data, floating-point operations, geometry transformations, voxel rendering acceleration, fast coordinate transformations, lighting computations[41]
  • Notes: Can only be programmed with assembly language, more difficult to program than SH-2Media:ST-TECH.pdf[37]



  • VDP2 32-bit background and scroll plane video display processor @ 28.6364 MHz: Handles background and scroll planesMedia:ST-058-R2-060194.pdf[28]
  • Features: Transparency, shadowing, 2 windows for special calculations,[31] matrix calculations,Media:ST-058-R2-060194.pdf[59] 3D infinite planes (grounds, walls, ceilings, skies, etc.), visual effects (water, fire, fog, heat haze, etc.)
  • Background planes: 7 layers, 2–6 simultaneous layers (1–4 scrolling 2D backgrounds, 1–2 rotating 3D playfields, 1 back screen)[31]Media:ST-058-R2-060194.pdf[30]Media:ST-058-R2-060194.pdf[60]
    • 2D scrolling backgrounds: Scrolling, parallax scrolling, single-axis 2D rotationMedia:13-APR-94.pdf[61]
      • NBG0: 16–16,777,216 colors, tilemap (1024×1024 to 2048×2048) or bitmap (512×256 to 1024×512), column/row/line scrolling, scaling
      • NBG1: 16–32,768 colors, tilemap (1024×1024 to 2048×2048) or bitmap (512×256 to 1024×512), column/row/line scrolling, scaling
      • NBG2/NBG3: 16–256 colors, tilemap (1024×1024 to 2048×2048)
    • 3D rotating playfields: Scrolling, scaling, dual-axis 3D rotation,Media:13-APR-94.pdf[61] 3D infinite ground planes, perspective correct 3D rotation
      • RBG0: 16–16,777,216 colors, tilemap (2048×2048 to 4096×4096) or bitmap (512×256 to 512×512)
      • RBG1: 16–16,777,216 colors, tilemap (2048×2048 to 4096×4096)
    • Back screen: 1 plain background,Media:ST-058-R2-060194.pdf[62] 1 to 240 colors (1 color per scanline)
  • Tilemap capabilities: 8×8 and 16×16 tile sizes,Media:ST-058-R2-060194.pdf[30] scroll plane up to 8192×8192 pixels,Media:13-APR-94.pdf[63] rotating 3D infinite planes up to 4096×4096 pixels each,Media:ST-058-R2-060194.pdf[60] tile compression, tiled rendering, virtually unlimited draw distance
  • Bitmap capabilities: Bitmap layers can be used as additional framebufferMedia:ST-058-R2-060194.pdf[64] (with full transparency), displays VDP1 framebuffer as additional bitmap layer, can rotate VDP1 framebufferMedia:ST-058-R2-060194.pdf[43]
  • Color palette: 16,777,216 colors (24-bit), 32,768 colors (15-bit), 65,536 colors (15-bit with transparency)
  • Bitmap fillrate:Media:ST-058-R2-060194.pdf[67]
    • 2D scrolling planes: 14.21875–114.5456 MPixels/s
      • 16,777,216 colors on screen: 14.3182 MPixels/s (NTSC), 14.21875 MPixels/s (PAL), 2 cycles per pixel
      • 32,768 colors per plane: 28.6364 MPixels/s (NTSC), 28.4375 MPixels/s (PAL), 1 pixel per cycle
      • 256 colors per plane: 57.2728 MPixels/s (NTSC), 56.875 MPixels/s (PAL), 2 pixels per cycle
      • 16 colors per plane: 114.5456 MPixels/s (NTSC), 113.75 MPixels/s (PAL), 4 pixels per cycle
    • 3D rotating playfield: 14.3182 MPixels/s (NTSC), 14.21875 MPixels/s (PAL), 2 cycles per pixel
  • Tilemap fillrate: 2x 128×128 to 512×512 tiles per frame, 1.96608–7.86432 million tiles/sec
    • 2D scrolling planes: 2x 1024×1024 to 2048×2048 pixels per frame, 125.82912–503.31648 MPixels/s (effective fillrate)
    • 3D rotating playfields: 2048×2048 to 4096×4096 pixels per frame, 251.65824–503.31648 MPixels/s (effective fillrate)
      • Effective polygon fillrate: Equivalent to 1 million texture-mapped polygons/sec, with 500 pixels per polygon


The Saturn supported the following display resolutions:Media:ST-103-R1-040194.pdf[68]


  • 320×224 (Lo‑Res)
  • 320×240 (Lo‑Res)
  • 320×256 (Lo-Res, PAL)
  • 352×224 (Lo‑Res)
  • 352×240 (Lo‑Res)
  • 352×256 (PAL)
  • 640×224
  • 640×240
  • 640×256 (PAL)
  • 704×224
  • 704×240
  • 704×256 (PAL)


  • 320×448
  • 320×512 (PAL)
  • 320×480
  • 352×448
  • 320×480
  • 352×512 (PAL)
  • 640×448 (Hi‑Res)
  • 640×480 (Hi‑Res)
  • 640×512 (Hi‑Res, PAL)
  • 704×448 (Hi‑Res)
  • 704×480 (Hi‑Res)
  • 704×512 (Hi‑Res, PAL)




System RAM buses, all connected through the SCU:Media:ST-103-R1-040194.pdf[19]Media:13-APR-94.pdf[69]Media:Sega Service Manual - Sega Saturn (PAL) - 013-1 - June 1995.pdf[15]

  • System bus (32‑bit, 28.6364 MHz)
    • SH2 (×2), SCU, SMPC <‑> Work RAM (2× SDRAM, 2× FPM DRAM), battery backup SRAM
  • Video sub‑system buses (80-bit, 28.6364 MHz)Media:ST-013-R3-061694.pdf[27]
    • SCU <-> VDP1, VDP2 (16-bit)
    • VDP1 <‑> Polygon/Texture/Sprite VRAM (SDRAM, 16-bit)
    • VDP1 <‑> Framebuffer 0 VRAM (SDRAM, 16-bit)
    • VDP1 <‑> Framebuffer 1 VRAM (SDRAM, 16-bit)
    • VDP2 <‑> Background VRAM (2× SDRAM, 32-bit)Media:ST-058-R2-060194.pdf[28]
  • Sound sub‑system bus — SCU, 68EC000, SCSP <‑> Sound RAM (FPM DRAM) (16-bit, 28.6364 MHz)
  • CD‑ROM sub‑system bus — SCU, SH1 <‑> CD‑ROM cache/buffer RAM (FPM DRAM) (16-bit, 28.6364 MHz)


  • System RAM bandwidth: 480.9096 MB/s (7 buses, 144-bit bus width)
    • System bus RAM: 114.5456 MB/s (32‑bit, 28.6364 MHz)
      • Work RAM: 114.5456 MB/s (114.5456 MB/s SDRAM, 88.888888 MB/s FPM DRAM)
      • Battery backup SRAM: 10 MB/s (8‑bit, 10 MHz)
    • VRAM: 286.364 MB/s (SDRAM, 4 buses, 80-bit bus width, 28.6364 MHz)
      • VDP1: 171.8184 MB/s (114.5456 MB/s framebuffers, 57.2728 MB/s polygons/textures/sprites) (48-bit)
      • VDP2: 114.5456 MB/s (backgrounds) (32-bit)
    • Sound RAM: 40 MB/s (FPM DRAM, 16‑bit, 20 MHz)
    • CD‑ROM cache/buffer: 40 MB/s (FPM DRAM, 16‑bit, 20 MHz)
  • System ROM bandwidth: 20 MB/s (16‑bit, 10 MHz)
  • Internal processor bandwidth:
    • SH2 cache: 229.0912 MB/s (114.5456 MB/s per SH2)
    • SH1 cache: 80 MB/s (32‑bit, 20 MHz)
    • SCU DSP RAM: 286 MB/s (171.6 MB/s for 3 buses, 114.4 MB/s for 1 bus)
    • SMPC: 7 MB/s (2 MB/s RAM, 5 MB/s ROM)
    • 68EC000: 22.6 MB/s (16‑bit, 11.3 MHz)
    • SCSP: 67.8 MB/s (24‑bit, 22.6 MHz)
    • VDP: 286.364 MB/s (171.8184 MB/s VDP1, 114.5456 MB/s VDP2 color RAM)



Main article: List of Sega Saturn accessories.
  • Two 16‑bit bidirectional parallel I/O ports
  • High-speed serial communications port (Both SH2 SCI channels and SCSP MIDI)
  • Cartridge connector
  • Internal expansion port for video decoder card
  • Composite video/stereo (JP Part No: HSS-0106)
  • NTSC/PAL RF (US Part No.: MK-80116, JP Part No.: HSS-0110)
  • S-Video compatible (JP Part No.: HSS-0105)
  • RGB compatible (JP Part No.: HSS-0109)
  • EDTV compatible (optional)


Main article: List of Sega Saturn accessories.

Power source

  • AC120 volts; 60 Hz (US)
  • AC240 volts; 50 Hz (EU)
  • AC200 volts; 60 Hz (JP)
  • 4 volt lithium battery to power non-volatile RAM and SMPC internal real-time clock
  • Power Consumption: 25 W

Dimensions (US/European model)

  • Width: 260 mm (10.2 in)
  • Length: 230 mm (9.0 in)
  • Height: 89 mm (3.2 in)


Main article: History of the Sega Saturn.

Game packaging

Japanese packaging

Japanese Saturn software usually came packaged in standard jewel cases, much like music CDs. They also came with spinecards - three-fold pieces of light cardboard that hug the spine of the jewel case. These are very valuable for collectors who wish to claim a game is "complete". The spinecard also indicates that the CD is for use with a Sega Saturn console - specifically Japanese NTSC systems. There were also jewel case quad CD cases, and a variant of the single case which was slightly thicker and VERY hard to replace.

Most of the time the spinecard will have a gold and black background with the Japanese Saturn logo and lettering printed vertically. Saturn collection games will have red and white spinecard with white lettering, the Saturn Collection logo under that, and the 2,800 yen price featured prominently. Manual is included with the cover seen through the front of the jewel case. The left side of the manual will usually have a bar similar in design to the spinecard. The Japanese SEGA rating, if there is one, will be included on the manual front (usually on one of the corners). There is also the insert on the back which may feature artwork or screenshots from the game. A black bar on the bottom of the insert contains information much like the spinecard, licensing information, et cetera.

The Japanese packaging was adopted in smaller Asian markets such as South Korea and China.

North American packaging

Sega of America adopted very simple packaging in the beginning, the likes of which hadn't been seen since the Sega Master System.

The US used much larger jewel cases identical to the US Sega Mega-CD jewel cases, since many of these were in fact leftover Sega CD jewel cases. The US case has a white spine containing a 30 degree stripe pattern in gray, with white outlined lettering displaying the words "Sega Saturn". Oddly some US packaging seems to have taken a step backwards in terms of aesthetics - with minimal front artwork almost akin to the Sega Master System.

There are many flaws with the US packaging:

  • Their sheer size made them more vulnerable to cracking.
  • The mechanism that keeps the cover closed wears out quickly if the cover is opened and closed too much
  • There is too much empty space inside the case. If the CD ever came off the case's spindle on its own (caused by rough handling of the case), the CD ends up being tossed around the inside of the case, causing either huge amount of scratches on the disc from careful handling of the case or shattering the disc from continued rough handling of the case.

European packaging

European cases come in two variants, both designed and engineered by Sega. One has a strong plastic design similar to the cases used with the Mega Drive and Master System (but taller, thinner and slightly more secure). The other feels far cheaper, being literally two pieces of plastic held together by a cardboard cover. Though the former was more preferred by the consumer, the latter was more common as it was cheaper to produce.

Both European cases has a solid black spine, with white lettering displaying the words "Sega Saturn". The manual slides in the case just like a normal jewel case and there is a back insert with information about the game. Like the American cases they are still too big and can lead to discs moving about and becoming scratched, though this may be to compensate for large multi-language manuals.

Some European boxes were wrapped in a transparent plastic shell after manufacture for extra security.

Brazillian packaging

Brazilian games were packaged in cardboard boxes, with a CD sleeve inside to keep the disc secure.


The Saturn is notoriously hard to emulate due to its complex architecture (dual processors, etc.), but three notable emulators do exist:

  • SSF is a highly compatible emulator, which is in continual development by a single developer.
  • GiriGiri was initially based on an abandoned emulator by Sega themselves, and was considered the best until development ceased and SSF overtook it.
  • Yabause is an open-source effort to create a Saturn emulator.

Software that plays files in the Saturn Sound Format, which stores audio ripped from games, does so through emulation of the audio-related code only.


List of games

Main article: List of Saturn games.

Launch titles


North America



Magazine articles

Main article: Sega Saturn/Magazine articles.

Promotional material

Print advertisements

SegaVisions US 24.pdfSegaVisions US 24.pdf

Print advert in

Sega Visions (US) #24: "May 1995" (1995-xx-xx)

GamePlayers US 0811.pdfGamePlayers US 0811.pdf

Print advert in

Game Players (US) Vol. 8 No. 11 "November 1995" (1995-xx-xx)

EGM US 077.pdfEGM US 077.pdf

Print advert in

Electronic Gaming Monthly (US) #77: "December 1995" (1995-xx-xx)

NextGeneration US 18.pdfNextGeneration US 18.pdf

Print advert in

Next Generation (US) #18: "June 1996" (1996-05-21)

PlayerOne FR 057.pdf

Print advert in

Player One (FR) #57: "Octobre 1995" (1995-xx-xx)
also published in:

  • CD Consoles (FR) #11: "Novembre 1995" (1995-xx-xx)[76]

CDConsoles FR 12.pdfCDConsoles FR 12.pdf

Print advert in

CD Consoles (FR) #12: "Décembre 1995" (1995-xx-xx)

HobbyConsolas ES 046.pdfHobbyConsolas ES 046.pdfHobbyConsolas ES 046.pdfHobbyConsolas ES 046.pdfHobbyConsolas ES 046.pdfHobbyConsolas ES 046.pdf

Print advert in

Hobby Consolas (ES) #46: "Julio 1995" (1995-xx-xx)

Hyper AU 021.pdf

Print advert in

Hyper (AU) #21: "August 1995" (1995-xx-xx)
also published in:

  • Hyper (AU) #20: "July 1995" (1995-xx-xx)[77]


Television advertisements


External links

  • Dave's Sega Saturn Page - Famous fansite that was extremely popular during the Saturn's heyday (no longer updated).


  1. 1.0 1.1 File:CVG UK 164.pdf, page 7
  2. File:CVG UK 165.pdf, page 30
  3. File:ConsolesMicro FR 01.pdf, page 13
  4. File:SegaMagazin DE 21.pdf, page 6
  5. File:HobbyConsolas ES 050.pdf, page 26
  6. File:HobbyConsolas ES 046.pdf, page 28
  7. File:SegaSaturn94JPCatalog.pdf
  8. File:Edge UK 024.pdf, page 9
  9. File:Hyper AU 003.pdf, page 8
  10. File:Edge_UK_030.pdf, page 99
  11. Scavenger Interview, Edge
  12. File:MAXIMUM UK 06.pdf, page 127
  13. 13.0 13.1 13.2 13.3 File:ST-013-R3-061694.pdf, page 110
  14. 14.0 14.1 File:Hitachi SuperH Programming Manual.pdf
  15. 15.00 15.01 15.02 15.03 15.04 15.05 15.06 15.07 15.08 15.09 15.10 15.11 15.12 15.13 15.14 15.15 15.16 File:Sega Service Manual - Sega Saturn (PAL) - 013-1 - June 1995.pdf
  16. File:ST-103-R1-040194.pdf, page 23
  17. File:SH-2A.pdf, page 2
  18. SH7040, SH7041, SH7042, SH7043, SH7044, SH7045, Renesas
  19. 19.0 19.1 19.2 19.3 19.4 19.5 19.6 19.7 File:ST-103-R1-040194.pdf
  20. 20.0 20.1 File:ST-097-R5-072694.pdf
  21. 21.0 21.1 File:ST-TECH.pdf, page 157
  22. 22.0 22.1 22.2 22.3 22.4 22.5 22.6 22.7 22.8 Sega Saturn (MAME)
  23. 23.0 23.1 File:HD40491 datasheet.pdf
  24. 24.0 24.1 File:ST-077-R2-052594.pdf
  25. 25.0 25.1 Sega Saturn FAQ (January 8, 2000)
  27. 27.0 27.1 27.2 27.3 27.4 File:ST-013-R3-061694.pdf
  28. 28.0 28.1 28.2 File:ST-058-R2-060194.pdf
  29. File:ST-013-R3-061694.pdf, page 6
  30. 30.0 30.1 30.2 File:ST-058-R2-060194.pdf, page 24
  31. 31.0 31.1 31.2 STV VDP2 (MAME)
  32. 32.0 32.1 File:ST-013-R3-061694.pdf, page 18
  33. 33.0 33.1 33.2 33.3 STV VDP1 (MAME)
  34. 34.0 34.1 34.2 34.3 34.4 34.5 File:NextGeneration US 24.pdf, page 64
  35. File:ST-103-R1-040194.pdf, page 17
  36. 36.0 36.1 File:ST-097-R5-072694.pdf, page 93
  37. 37.0 37.1 37.2 File:ST-TECH.pdf, page 149
  38. File:ST-TECH.pdf, page 152
  39. File:ST-103-R1-040194.pdf, page 25
  40. File:ST-TECH.pdf, page 163
  41. The State of Sega Saturn Homebrew
  42. File:Sega Service Manual - Sega Saturn (PAL) - 013-1 - June 1995.pdf, page 34
  43. 43.0 43.1 File:ST-058-R2-060194.pdf, page 177
  44. File:ST-013-R3-061694.pdf, page 149
  45. 45.0 45.1 45.2 File:ST-013-R3-061694.pdf, page 64
  46. Sega Saturn Tech Specs
  47. Sega System 24 Hardware Notes
  48. File:ST-013-R3-061694.pdf, page 119
  49. File:ST-013-R3-061694.pdf, page 29
  50. File:ST-013-R3-061694.pdf, page 81
  51. 51.0 51.1 File:ST-013-R3-061694.pdf, page 75
  52. 52.0 52.1 File:ST-013-R3-061694.pdf, page 39
  53. 53.0 53.1 File:ST-013-R3-061694.pdf, page 52
  54. File:ST-013-R3-061694.pdf, page 35
  55. File:ST-013-R3-061694.pdf, page 61
  56. File:ST-238-R1-051795.pdf
  57. File:ST-013-R3-061694.pdf, page 34
  58. File:ST-013-R3-061694.pdf, page 24
  59. File:ST-058-R2-060194.pdf, page 163
  60. 60.0 60.1 File:ST-058-R2-060194.pdf, page 132
  61. 61.0 61.1 File:13-APR-94.pdf, page 12
  62. File:ST-058-R2-060194.pdf, page 23
  63. File:13-APR-94.pdf, page 28
  64. File:ST-058-R2-060194.pdf, page 54
  65. File:ST-058-R2-060194.pdf, page 79
  66. File:ST-058-R2-060194.pdf, page 360
  67. File:ST-058-R2-060194.pdf, page 49
  68. File:ST-103-R1-040194.pdf, page 39
  69. 69.0 69.1 File:13-APR-94.pdf, page 8
  70. 70.0 70.1 File:HM5241605 datasheet.pdf
  71. 71.0 71.1 File:TC514260B datasheet.pdf
  72. 72.0 72.1 File:UPD4504161 datasheet.pdf
  73. File:HM514270D datasheet.pdf
  74. File:SRM20256L datasheet.pdf
  75. File:TC574200D datasheet.pdf
  76. File:CDConsoles FR 11.pdf, page 89
  77. File:Hyper AU 022.pdf, page 11
Sega Home Video Game Systems
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 10 11
SG-1000 SG-1000 II Mega Drive Mega Drive II
SC-3000 Mega-CD Mega-CD II Genesis 3
Sega Mark III Saturn
Master System Master System II
Game Gear
32X Dreamcast
Pico Beena
Sega Saturn Hardware
 Saturn Variations   Sega Saturn consoles (HiSaturn, V-Saturn, etc.) | North America | Europe | Brazil | Asia

HiSaturn Navi | SunSeibu SGX | Sega Titan Video

 Console Add-ons   Backup Memory | Sega PriFun | Video CD Card | Extended RAM Cartridge | ROM Cartridge
Game Controllers   Standard gamepad | 3D Control Pad | Arcade Racer Joystick | Infrared Control Pad | Sega Mission Stick | Shuttle Mouse | Twin Stick | Virtua Gun | Virtua Stick | Virtua Stick Pro
Online Services/Add-ons   NetLink Internet Modem (NetLink Keyboard | NetLink Keyboard Adapter | NetLink Mouse) | Saturn Modem (Floppy Drive | Keyboard)
Connector Cables   21 Pin RGB Cable | Monaural AV Cable | RF Unit | Stereo AV Cable | S-Video Cable | Taisen Cable
Development Hardware Programming Box | Sound Box | E7000 | CartDev | SNASM2 | Saturn Address Checker | PSY-Q Development System
Misc. Hardware   6 Player Adaptor‎ | Action Replay | Action Replay Plus | Pro Action Replay | SBom Multitap‎ | S-S Promoter